Universidade Federal de Mato Grosso Instituto de Saúde Coletiva

Indicadores de saúde ambiental relacionados ao uso agrícola de agrotóxicos e câncer no Estado de Mato Grosso - Brasil

Hélen Rosane Meinke Curvo

Dissertação apresentada ao Programa de Pós-Graduação em Saúde Coletiva para obtenção do título de Mestre em Saúde Coletiva.

Área de Concentração: Saúde Coletiva.

Orientadora: Dra. Marta Gislene Pignatti.

Cuiabá 2012 Indicadores de saúde ambiental relacionados ao uso agrícola de agrotóxicos e câncer no Estado de Mato Grosso - Brasil

Hélen Rosane Meinke Curvo

Dissertação apresentada ao Programa de Pós-Graduação em Saúde Coletiva para obtenção do título de Mestre em Saúde Coletiva.

Área de Concentração: Saúde Coletiva.

Orientadora: Dra. Marta Gislene Pignatti.

Cuiabá

2012

É expressamente proibida a comercialização deste produto, tanto na sua forma impressa como eletrônica. Sua reprodução total ou parcial é permitida <u>exclusivamente</u> para fins acadêmicos e científicos, desde que na reprodução figure a identificação do autor, título, instituição e ano da dissertação.

FICHA CATALOGRÁFICA

Dados Internacionais de Catalogação na Fonte

C976i Curvo, Hélen Rosane Meinke.

Indicadores de saúde ambiental relacionados ao uso agrícola de agrotóxicos e câncer no Estado de Mato Grosso - Brasil / Hélen Rosane Meinke Curvo. -- 2012.

xv, 134 f.; 30 cm (incluem figuras e tabelas)

Orientadora: Prof^a. Dr^a.Marta Gislene Pignatti Dissertação (mestrado) -- Universidade Federal de Mato Grosso, Instituto de Saúde Coletiva, Programa de Pós-Graduação em Saúde Coletiva, Cuiabá, 2012.

Bibliografia: f. 113-125

Catalogação na fonte: Maurício S.de Oliveira CRB/1-1860.

DEDICATÓRIA

Dedico este trabalho ao amor da minha vida, Adriano e aos nossos filhos Elise, Adrianinho e Renata.

AGRADECIMENTOS

Agradeço

Ao Senhor Deus por permitir "abandonar as roupas usadas que já tinham a forma do meu corpo" e ousar por uma nova travessia de vivência e aprendizado;

Ao meu marido por ser um comigo;

Aos meus filhos, por me ensinarem a amar;

Aos meus pais, por cada sementinha plantada em mim;

A minha família, por acreditar em mim;

Aos Professores do Instituto de Saúde Coletiva por compartilhar seus saberes;

Aos queridos Jurema e Hailton pelo carinho e presteza;

Aos Colegas de trabalho pelo suporte enquanto estive ausente;

Às Colegas de turma pelo tempo partilhado;

À Secretaria de Estado de Saúde pela liberação para a realização do curso;

E, em especial,

À Professora Marta que além de orientar, ofereceu amizade e confiança.

Curvo HRM, Indicadores de saúde ambiental relacionados ao uso agrícola de agrotóxicos e câncer no Estado de Mato Grosso - Brasil [dissertação de mestrado]. Cuiabá: Instituto de Saúde Coletiva da UFMT; 2012.

RESUMO

Introdução: A relação entre poluição ambiental (condicionantes ambientais) e saúde humana é complexa, tendo como elo comum o crescimento econômico. O Estado de Mato Grosso adotou um modelo de crescimento baseado na agricultura moderna, com monoculturas em vastas extensões de terras e dependente de agrotóxicos em larga escala, o que leva a efeitos específicos na saúde humana. Entre esses efeitos está o câncer, que configura como a segunda causa de morte por doença no estado. Objetivos: Analisar os indicadores de saúde ambiental relacionados ao uso agrícola de agrotóxicos e câncer tomando-se como referência os anos de 1996 a 2006. Objetivos Específicos: Identificar os indicadores de saúde ambiental; Caracterizar o processo econômico e de produção agrícola; Identificar o uso de agrotóxicos relacionados a morbidade e mortalidade por câncer; Relacionar o uso agrícola de agrotóxicos com os indicadores de câncer na população menor de 20 anos nos municípios do estado de Mato Grosso. Metodologia: 1) Construção de matriz de indicadores integrados de saúde e ambiente para o estado de Mato Grosso através de estudo histórico-documental do processo de crescimento econômico e modelo de produção agrícola; revisão bibliográfica dos efeitos dos agrotóxicos na saúde humana e câncer 2) Estudo ecológico analisando comparativamente registros temporais de indicadores de uso de agrotóxicos e indicadores de morbidade e mortalidade por câncer em menores de 20 anos nos municípios do estado de Mato Grosso. Resultados: Foi construída uma matriz de indicadores de saúde e ambiente para o estado de Mato Grosso através de estudo histórico-documental do processo de crescimento econômico e modelo de produção agrícola e efeitos dos agrotóxicos na saúde humana e câncer. Foram identificados 5,98% dos municípios do estado com piores índices de Pressão em 1996 e aumentaram para 9,93% em 2006. Com resultados médios, eram 13,68% dos municípios em 1996 e passou para 53,90% no

ano de 2006. Porém dos 80,34% dos municípios classificados com altos resultados, restaram 36,17% em 2006. Percebe-se piora nos indicadores de Pressão no comparativo entre esses anos. Com relação ao uso de agrotóxicos, indicador selecionado para o Componente Estado/Situação, observou-se em 1996 apenas 1,71% dos municípios com piores resultados e aumentou para 5,67% em 2006. O percentual de municípios identificados com resultado médio manteve-se entre 7 e 8 % nos anos avaliados. Nesse componente o percentual de municípios com melhores resultados diminuiu de 90,60% em 1996 para 82,27% em 2006. No estudo ecológico observou-se que a média de uso de agrotóxicos nos munícipios apresentou associação estatisticamente significante tanto para morbidade por câncer em menores de 20 anos (p=0,021), como para mortalidade por câncer infanto-juvenil (p=0,005), com IC de 95%. **Considerações Finais:** A utilização da metodologia combinada por níveis de complexidade evidenciou que o crescimento econômico e processos de produção agrícola – produzem e reproduzem riscos e efeitos diferenciados relacionados ao câncer.

Descritores: Crescimento Econômico, Agrotóxico, Câncer.

Curvo HRM, Environmental health indicators related to agricultural use of pesticides and cancer in the state of Mato Grosso - Brazil [dissertation]. Cuiabá: Public Health Institute of UFMT, 2012.

ABSTRACT

Introduction: The relationship between environmental pollution (environmental constraints) and human health is complex, having in common the link economic growth. The State of Mato Grosso has adopted a growth model based on modern agriculture with monocultures over large tracts of land and dependent on pesticides on a large scale, which leads to specific effects on human health. Among these effects is cancer, which sets up as the second cause of death by disease in the state. **Objective:** To analyze the environmental health indicators related to agricultural use of pesticides and cancer taking as reference the years 1996 to 2006. Specific Objectives: To identify indicators of environmental health, economic and characterize the process of agricultural production; identify the use of pesticiderelated morbidity and mortality from cancer, relate the agricultural use of pesticides with the indicators of cancer in the population under 20 years in municipalities in the state of Mato Grosso. **Methodology:** 1) Construction of integrated array of indicators of health and environment for the state of Mato Grosso through historicaldocumentary of the process of economic growth and agricultural production model, literature review of the effects of pesticides on human health and cancer 2) Ecological study analyzing temporal indicators compared records of pesticide use and indicators of morbidity and mortality from cancer in people under 20 municipalities in the state of Mato Grosso. Results: We constructed an array of indicators of environmental health for the state of Mato Grosso through historicaldocumentary of the process of economic growth and agricultural production model and effects of pesticides on human health and cancer. We identified 5.98% of municipalities in the state with the worst rates of pressure in 1996 and increased to 9.93% in 2006. With average scores were 13.68% of the municipalities in 1996 and rose to 53.90% in 2006. But the 80.34% of the districts with high results, remaining 36.17% in 2006. It can be seen worsening indicators of pressure in the comparison between these years. Regarding the use of pesticides, selected indicator for Component Status, observed in 1996 only 1.71% of municipalities with worse outcomes and increased to 5.67% in 2006. The percentage of districts identified with a mean score remained between 7 and 8% in the year assessed. Within this component the percentage of municipalities with better results decreased from 90.60% in 1996 to 82.27% in 2006. In the ecological study showed that the average use of pesticides in municipal regions showed statistically significant association for both cancer mortality rates in children under 20 years (p = 0.021) and for cancer mortality of children and adolescents (p = 0.005), with 95% CI. **Conclusion:** The combined use of the methodology by levels of complexity showed that economic

growth and processes of agricultural production - produce and reproduce different

Keywords: Economic Growth, Pesticides, Cancer.

effects and risks related to cancer.

ÍNDICE

APRESENTAÇÃO	13
INTRODUÇÃO	16
O Desafio da Abordagem Combinada	20
Delineamento do estudo	23
CAPÍTULO I	30
1. CRESCIMENTO ECONÔMICO E DEGRADAÇÃO AMBIENTAL	31
1.1 Caracterização histórica do crescimento econômico do Estado de Mato Grosso	36
1.2 Indicadores econômicos e de distribuição de renda em Mato Grosso	48
CAPÍTULO II	56
2. AGRICULTURA MODERNA	57
2.1 Indicadores da concentração fundiária e produção agrícola em Mato Grosso	60
CAPÍTULO III	64
3. AGROTÓXICOS	65
3.1 Caracterização dos Agrotóxicos	67
3.2 Indicadores do uso de Agrotóxicos em Mato Grosso	72
CAPITULO IV	79
4. CÂNCER	80
4.1 Tendência da Mortalidade por Câncer em Mato Grosso	82
4.2 Câncer Infanto-juvenil	86
4.2.1 Incidência do Câncer Infanto-juvenil em Mato Grosso	87
4.2.2 Mortalidade Infanto-juvenil por Câncer em Mato Grosso	90
4.2.3 Associação entre Câncer Infanto-Juvenil e uso de agrotóxicos nos municípios de Mato Grosso	91
CAPITULO V	94
5. SISTEMATIZAÇÃO DOS INDICADORES	95
5.1 Indicadores selecionados	95
5.2 Índices Integrados	97
CONSIDERAÇÕES FINAIS1	08
REFERÊNCIAS1	
ANEXOS 1	25

LISTA DE SIGLAS

ANVISA - Agência Nacional de Vigilância Sanitária

BNDS - Banco Nacional de Desenvolvimento

CAMPO - Companhia de Promoção Agrícola

CID 10 - Classificação Estatística Internacional de Doenças - Versão 2010

DATASUS - Departamento de Informática do Sistema Único de Saúde

DNA - Ácido Desoxirribonucleico

EMBRAPA - Empresa Brasileira de Pesquisa Agropecuária

EMPA/MT - Empresa de Pesquisa Agropecuária de Mato Grosso

EPA - Environmental Protection Agency

FBC - Fundação Brasil Central

FPEEEA - Força Motriz, Pressão, Estado/Situação, Exposição, Efeito e Ação

FUNASA - Fundação Nacional de Saúde

FUNDAG - Fundo de Desenvolvimento da Agricultura

FUP - Fundo de Preços Uniformes de Frete

IARC - International Agency for Research on Cancer

IBGE - Instituto Brasileiro de Geografia e Estatística

INCA - Instituto Nacional de Câncer

INCRA - Instituto Nacional de Colonização e Reforma Agrária

INDEA-MT - Instituto de Defesa Agropecuária de Mato Grosso

INTERMAT - Instituto de Terras de Mato Grosso

ISPN - Instituto Sociedade, População e Natureza

JICA - Japan International Cooperation Agency

MEA - Millennium Ecosystem Assessment

MS - Ministério da Saúde

OMS - Organização Mundial da Saúde

OPAS - Organização Pan-americana de Saúde

PGPM - Política de Garantia de Preços Mínimos

PIB - Produto Interno Bruto

PIN - Programa de Integração Nacional

PNAD - Pesquisa Nacional por Amostra de Domicílios

PNMA - Política Nacional do Meio Ambiente

POLONOROESTE - Programa para Desenvolvimento Integrado do Noroeste

PRODECER - Programa de Cooperação Nipo-Brasileiro para o Desenvolvimento dos Cerrados

PRODOESTE - Plano de Desenvolvimento da Região Centro-Oeste

RCBP - Registro de Câncer de Base Populacional

SIM - Sistema de Informações sobre Mortalidade

SINDAG - Sindicato Nacional da Indústria de Produtos para Defesa Agrícola

SNCR - Sistema Nacional de Crédito Rural

SUDAM - Superintendência do Desenvolvimento da Amazônia

SUDECO - Superintendência do Desenvolvimento do Centro-Oeste

SUDENE - Superintendência do Desenvolvimento do Nordeste

SVS - Secretaria de Vigilância em Saúde

UICC - Union for Internacional Câncer Control

LISTA DE TABELAS

	MÉDIA DO PIB* COMPARATIVO BRASIL, REGIÃO CENTRO-OESTE E MATO GROSSO, ANOS
	00849
	PIB* COMPARATIVO ENTRE BRASIL, REGIÃO CENTRO-OESTE E MATO GROSSO, ANOS DE
	E 2006
	INCREMENTO DO VALOR ADICIONADO PELA ATIVIDADE AGROPECUÁRIA AO PIB*, BRASIL,
	O CENTRO-OESTE E MATO GROSSO, COMPARATIVO ENTRE OS ANOS DE 1996 E 2006
	ADE R\$ 2.000,00)
	INCREMENTO NA PARTICIPAÇÃO DA REGIÃO CENTRO-OESTE E DO ESTADO DE MATO
	SO NO VALOR ADICIONADO BRUTO DO PIB NACIONAL, SEGUNDO ATIVIDADE ECONÒMICA,
ANOS	1996-200650
TABELA 05	PERCENTUAL DE INCREMENTO NO PIB PER CAPITA (UNIDADE R\$2.000,00), NO BRASIL,
REGIÃ	O CENTRO-OESTE E MATO GROSSO, ENTRE OS ANOS DE 1996 E 200652
	EVOLUÇÃO DA ESTRUTURA FUNDIÁRIA DE MATO GROSSO ENTRE 1996 E 2006
	EVOLUÇÃO DO NÚMERO DE TRATORES POR POTÊNCIA(CV). MATO GROSSO, ANOS 1996-
	Produção dos principais bens agrícolas de Mato grosso (em Toneladas), 1996-
	INGREDIENTES ATIVOS DESCRITOS NA LITERATURA COMO CARCINOGÊNICOS E A MÉDIA DE
	JMO NOS ANOS DE 2005 A 2009. MATO GROSSO
	INGREDIENTES ATIVOS DESCRITOS NA LITERATURA COMO POTENCIALMENTE
	NOGÊNICOS E A MÉDIA DE CONSUMO NOS ANOS DE 2005 A 2009. MATO GROSSO
	INGREDIENTES ATIVOS DESCRITOS NA LITERATURA COMO NÃO COMPROVADAMENTE
	NOGÊNICOS E A MÉDIA DE CONSUMO NOS ANOS DE 2005 A 2009. MATO GROSSO
	ESTIMATIVAS REFERENTES À EQUAÇÃO DE REGRESSÃO LINEAR, SEGUNDO SEXO. MATO
	83, 1996-2006
	DISTRIBUIÇÃO DE ÓBITOS E PERCENTUAL DE MORTALIDADE POR SEXO, SEGUNDO CAUSA
	A, EM MENORES DE 20 ANOS. MATO GROSSO, 2000 A 2006
	ASSOCIAÇÃO ENTRE MÉDIA DE USO DE AGROTÓXICOS NOS MUNICÍPIOS DE MATO GROSSO
	OS NOVOS E ÓBITOS POR CÂNCER INFANTO-JUVENIL (IJ) NOS PERÍODOS APRESENTADOS92
	COMPARATIVO DA PORCENTAGEM DE MUNICÍPIOS CLASSIFICADOS DE ACORDO COM OS
	TADOS DOS ÍNDICES NOS COMPONENTES DA MATRIZ, ENTRE OS ANOS DE 1996 E 200696
	ÍNDICE INTEGRADO DE FORÇA MOTRIZ E PRESSÃO. MATO GROSSO, 1996
	ÍNDICE INTEGRADO DE FORÇA MOTRIZ E FRESSAO. MATO GROSSO, 2000
	ÍNDICE INTEGRADO DE FORÇA MOTRIZ E ESTADO. MATO GROSSO, 1990
	ÍNDICE INTEGRADO DE FORÇA MOTRIZ E ESTADO. MATO GROSSO, 2000
	ÍNDICE INTEGRADO DE FORÇA MOTRIZ, PRESSÃO E ESTADO. MATO GROSSO, 1990 10. ÍNDICE INTEGRADO DE FORÇA MOTRIZ, PRESSÃO E ESTADO. MATO GROSSO, 2006 102
	ÍNDICE INTEGRADO DE SAÚDE AMBIENTE PARA CÂNCER POPULAÇÃO GERAL. MATO
	50, 1996
TARFIA 23	ÍNDICE INTEGRADO DE SAÚDE AMBIENTE PARA CÂNCER POPULAÇÃO GERAL. MATO
GROSS	50, 2006
	ÍNDICE INTEGRADO DE SAÚDE AMBIENTE PARA CÂNCER INFANTO-JUVENIL (IJ). MATO
	50, 1996
	ÍNDICE INTEGRADO DE SAÚDE AMBIENTE PARA CÂNCER INFANTO-JUVENIL (IJ). MATO
	50, 2006
	REGRESSÃO MÚLTIPLA DOS ÓBITOS POR CÂNCER NA POPULAÇÃO GERAL(PG) E NA
	AÇÃO INFANTO-JUVENIL(PIJ) POR MUNICÍPIOS DO ESTADO DE MATO GROSSO, 1996 E
_000	100

LISTA DE FIGURAS

FIGURA 01 MATRIZ FPEEEA – TRADUZIDA DE BRIGGS D. ENVIRONMENTAL HEALTH INDICATORS
FRAMEWORK AND METHODOLOGIES. GENEVA. WORLD HEALTH ORGANIZATION. 1999
ADAPTADA PELA AUTORA
FIGURA 02 EVOLUÇÃO DO COEFICIENTE DE GINI COMPARATIVA ENTRE BRASIL E MATO GROSSO N
período de 1996 a 20065
FIGURA 03 CLASSIFICAÇÃO DAS PRINCIPAIS CLASSES DE AGROTÓXICOS QUANTO À SUA AÇÃO E A
GRUPO QUÍMICO AO QUAL PERTENCEM: ERRO! INDICADOR NÃO DEFINIDO
FIGURA 04 EVOLUÇÃO DA UTILIZAÇÃO DE AGROTÓXICOS EM MATO GROSSO, EM MILHÕES DE LITROS
NO PERÍODO DE 1996 A 20067
FIGURA 05 TAXA DE MORTALIDADE POR NEOPLASIAS POR 100.000 HABITANTES, SEGUNDO SEXO
Mato Grosso, 1996-2006
FIGURA 06 TAXA DE MORTALIDADE POR TOPOGRAFIAS MAIS FREQUENTES. MATO GROSSO, 1996
20068
FIGURA 07 TAXA DE MORTALIDADE POR TOPOGRAFIAS MAIS FREQUENTES NO SEXO MASCULINO
Mato Grosso, 1996 a 2006
FIGURA 08 TAXA DE MORTALIDADE POR TOPOGRAFIAS MAIS FREQUENTES NO SEXO FEMININO. MAT
Grosso, 1996 a 20068
FIGURA 09 DISTRIBUIÇÃO DE INCIDÊNCIA DE CÂNCER INFANTO-JUVENIL SEGUNDO ANO D
DIAGNÓSTICO E SEXO. MATO GROSSO, 2000-2005.
FIGURA 10 NÚMERO DE CASOS POR TIPO DE CÂNCER INFANTO-JUVENIL, SEGUNDO FAIXA ETÁRIA
Mato Grosso, 2000 a 2005

APRESENTAÇÃO

Saúde e ambiente são objetos complexos e requerem uma abordagem interdisciplinar, aberta à sociedade, que lide com incertezas do conhecimento científico, de políticas e de modelos de desenvolvimento adotados.

As metodologias de pesquisa - principalmente os desenhos de estudos epidemiológicos clássicos - não se mostravam suficientes para atender o desafio proposto para essa dissertação de compreender o intenso e rápido crescimento econômico do Estado de Mato Grosso - reconhecido como um dos estados mais ricos do Brasil - dependente do agronegócio; as transformações geradas pelo processo produtivo; a crença da sociedade de que o crescimento econômico propiciaria melhores condições de vida, aliada a vivência das pessoas com câncer, observadas ao longo da minha experiência na saúde pública.

Dessa forma, partindo da hipótese de que as ações das forças produtivas se configuram em um dos elementos determinantes das mudanças dos indicadores de câncer no estado, trabalharam-se as inter-relações entre níveis de macro e micro contexto, através de um modelo compreensivo/explicativo de caráter ecossistêmico.

Na perspectiva de apresentar o produto da trajetória teórica, empírica e analítica percorrida, este estudo foi organizado em capítulos que abordam os diferentes níveis de análise e conformam os componentes/estratos do modelo adotado.

Na introdução apresentou-se o objeto do estudo, objetivos e o percurso metodológico, utilizando-se dos estratos propostos para a Saúde Ambiental, onde a determinação econômica é chamada de força motriz, a atividade produtiva agrícola,

denominada força de pressão, a situação o uso dos agrotóxicos que expõe toda a população e o efeito - a produção de doença - câncer.

No entanto, para cada um dos estratos foi realizada uma discussão teórica e posteriormente, analisada a situação do Estado do Mato Grosso no contexto e seleção de alguns indicadores.

No primeiro capítulo discutiu-se crescimento econômico e degradação ambiental e através de um estudo histórico-documental do crescimento econômico foram mensurados para o Estado de Mato Grosso os indicadores econômicos e de distribuição de renda.

No segundo capítulo descreveu-se o modelo de produção agrícola adotado pelo Brasil e analisou-se a estrutura fundiária; as modificações técnicas ocorridas através do uso de tratores e quantidade de produção dos principais bens agrícolas do estado.

No terceiro capítulo, apresentou-se a conceituação, a legislação e a classificação dos agrotóxicos quanto a sua ação (natureza da praga controlada) e ao grupo químico ao qual pertence, atentando para as evidências de ação carcinogênica.

Foi realizada análise de tendência do uso de agrotóxicos no estado e um esforço no sentido de discutir, dentre os componentes químicos mais utilizados, aqueles que são reconhecidamente cancerígenos.

No quarto capítulo, caracterizou-se a importância epidemiológica do Câncer e analisou-se a tendência da mortalidade por câncer em Mato Grosso entre os anos de 1996 e 2006.

Para analisar a associação entre o uso agrícola de agrotóxicos nos municípios do estado em relação a morbidade e mortalidade por câncer, foi feito um recorte para a faixa etária de residentes menores de 20 anos, partindo-se do pressuposto de que esta população sofreu a exposição em sua área de residência.

Foi realizado estudo epidemiológico descritivo com delineamento ecológico de séries históricas das informações sobre os indicadores de morbidade (2000 a 2005) e mortalidade (2000 a 2006) por câncer na faixa etária de 0 a 19 anos e o uso de agrotóxicos nos municípios do estado de Mato Grosso.

No quinto capítulo, sistematizaram-se os indicadores selecionados em uma matriz através de modelo multivariado compreensivo/explicativo e definiram-se os índices integrados de saúde e ambiente. Estes foram apresentados e discutidos, tendo por unidade de análise os municípios do estado em função do grau de gravidade em que a problemática socioambiental se encontrava.

Este estudo fez parte do projeto de pesquisa "Avaliação do risco à saúde humana decorrente do uso de agrotóxicos (defensivos agrícolas) na agricultura e pecuária na Região Centro-Oeste", financiado pelo Conselho Nacional de Desenvolvimento Científico e Tecnológico – CNPq e desenvolvido pelo Núcleo de Pesquisa do Instituto de Saúde Coletiva da área de Saúde, Ambiente e Trabalho – Avaliação dos Impactos dos Agrotóxicos na Saúde e Ambiente - UFMT/ISC, no período de 2007 a 2009.

INTRODUÇÃO

A deterioração ambiental tem adquirido nos últimos anos uma grande importância devido a impactos globais, tais como as mudanças climáticas, o efeito estufa, o aumento do buraco da camada de ozônio, a poluição atmosférica e a perda da biodiversidade. No entanto, são antigos os problemas ambientais locais, como a degradação da água, do ar e do solo, do ambiente doméstico e de trabalho e que têm impactado significativamente a saúde humana (PIGNATTI, 2004).

A origem da poluição ambiental está historicamente relacionada com a forma de apropriação dos recursos naturais pela sociedade humana devido a industrialização e o uso de tecnologias produtivas (GOLDBLATT, 1996).

A população humana e a produção material vêm se expandindo, levando de um lado, a um aumento contínuo da extração de recursos naturais e produzindo, de outro, volumes cada vez maiores de emanações de resíduos e rejeitos para o meio ambiente, muitos de elevado potencial nocivo (MUELLER, 2007).

Essas emanações têm sido provocadas pelo processo produtivo, que abrange todo o percurso da produção de mercadorias e compreende atividades desde a extração das matérias-primas, a sua transformação em produtos e o consumo, até o seu destino final sob a forma de resíduos (CÂMARA & TAMBELLINI, 2003).

No Estado de Mato Grosso, os problemas ambientais e de saúde podem ser resultantes das atividades econômicas vigentes, da modernização da agricultura, do processo acelerado de urbanização, da transformação (in)sustentada dos recursos naturais e da dependência energética de fontes não renováveis (PICOLI, 2005; PIGNATTI, 2005).

No ano de 2010, o estado foi apontado pelo Instituto Brasileiro de Geografia e Estatística (IBGE, 2010) como o maior produtor de soja (15 milhões de toneladas) e algodão em pluma (1,1 milhão de toneladas), o segundo maior produtor de arroz (1,7 milhão de toneladas), o quinto produtor de cana-de-açúcar e o sétimo de milho, além de responder pelo maior rebanho de corte nacional. Associado a isso, foi citado pelo Sindicato Nacional da Indústria de Produtos para Defesa Agrícola como o líder em vendas de agrotóxicos do país (SINDAG, 2010).

O processo histórico de crescimento econômico e de ocupação do estado foi estimulado por programas governamentais, configurando a expansão agropecuária altamente concentrada em termos de terra e capital com o propósito de gerar divisas externas (OLIVEIRA, 1997; GUIDOLIN, 2003; PEREIRA, 2007).

Várias pesquisas apontam uma possível relação causal entre esse modelo, pautado na produção em grande escala, com novas técnicas e monoculturas em vastas extensões de terras; com elevados investimentos em máquinas agrícolas de grande porte e dependência de insumos modernos, como agrotóxicos, fertilizantes e sementes e os efeitos indesejados na saúde humana (DELGADO 1985; TRAPÉ, 1993; JEYARTAN, 1990; MOREIRA et al., 2002; REZENDE, 2001, 2002; CARVALHO, 2007).

No Estado de Mato Grosso alguns estudos evidenciaram a situação derivada do modelo agropecuário, desde a diminuição de empregos no campo com a tecnificação agrícola; a exposição de toda a população devido a localização das cidades em áreas com intensa atividade agrícola (cultivo nas suas bordas); até o uso em grande escala de agrotóxicos que se faz através de aplicações aéreas e ou por maquinário, que contaminam os alimentos, ar, água, solo e expõem toda a população aos riscos de agravos à saúde (SILVA et al.,1998; DORES, 2001; RIEDER, 2005; RODRIGUES et al., 2005; GONZAGA, 2006; PIGNATTI, 2007).

Dentre os agravos à saúde humana destacam-se as intoxicações agudas e crônicas por agrotóxicos que, em longo prazo, manifestam-se como doenças crônicas.

Os estudos que avaliam as consequências do uso de agrotóxicos no Brasil enfatizam, na maioria das vezes, os efeitos agudos (MEYER et al., 2003). Dentre os efeitos crônicos, o uso de agrotóxicos pode ser considerado como uma condição potencialmente associada aos distúrbios reprodutivos (MEYER et al., 1999; KOIFMAN et al., 2002; GIBSON & KOIFMAN, 2008), a alterações psiquiátricas (PIRES et al., 2005), a efeitos neurotóxicos/ teratogênicos (MEYER et al., 2004) e ao câncer (MEYER et al., 2003; KOIFMAN & KOIFMAN, 2003; CHRISMAN et al., 2009).

KOIFMAN & HATAGIMA (2003) associaram o desenvolvimento do câncer com a exposição aos agrotóxicos por sua possível atuação como iniciadores tumorais - substâncias capazes de alterar o DNA de uma célula, podendo futuramente originar o tumor - e/ou como promotores tumorais - substâncias que estimulam a célula alterada a se dividir de forma desorganizada.

Salienta-se que no ano de 2010, em um estudo no município de Lucas do Rio Verde, foram detectados traços de agrotóxicos em leite materno, especialmente de endossulfan que apresenta alto potencial cancerígeno (PALMA, 2010).

O câncer é um processo evolutivo causado pela interação gene - meio ambiente (VINEIS, 2003). Em geral, demanda longo tempo entre a exposição ao agente cancerígeno e o início dos sintomas clínicos. Além disso, caracteriza-se por ser de origem multifatorial, e são muitos os mecanismos que interferem na sua formação. Estima-se que as influências ambientais contribuam com mais de 80% dos fatores envolvidos no surgimento do câncer esporádico (PALLI et al, 2000).

No Estado de Mato Grosso o câncer é a segunda causa de morte por doença desde o ano de 1996. Sendo que no período de 1996 a 2006, a mortalidade por câncer por 100.000 habitantes passou de 38,20 para 57,86 (em curva ascendente) com aumento de 19,66%, enquanto que no Brasil esse indicador passou de 65,83 para 83,42 (em curva ascendente) com aumento de 17,58%.

O Instituto Nacional de Câncer (INCA, 2010) registrou para o Mato Grosso no ano de 2008, a taxa de mortalidade de 66,97 óbitos para cada 100.000 homens e 49,13 óbitos para cada 100.000 mulheres por todas as neoplasias.

Diante desse contexto, se colocaram alguns questionamentos: Como se caracterizou o crescimento econômico e o modelo de produção no Estado de Mato Grosso? Qual a relação entre a agricultura moderna e o uso de agrotóxicos? Existe uma associação entre o uso de agrotóxicos e a morbimortalidade por câncer?

Essas questões, aliadas à escassez de estudos sobre os índices integrados de saúde e ambiente no Estado de Mato Grosso relacionado ao modelo de produção e de crescimento econômico; o volume de agrotóxico utilizado na lavoura; a exposição crônica da população aos agrotóxicos e a consequente magnitude dos indicadores de câncer na população foram norteadoras dessa dissertação.

Para enfrentar esse desafio, optou-se por um modelo compreensivo/explicativo de caráter ecossistêmico, a partir da identificação de indicadores, nos níveis de macro e micro contexto, que representem a relação existente entre os condicionantes sócio-econômico-ambientais e os efeitos na morbimortalidade por câncer.

Entende-se que para se estudar a relação do modelo de produção/crescimento econômico com o câncer, inter-relacionados entre si, com enfoque epidemiológico ecológico e social, as investigações devem conter a análise do processo produtivo, de dados de produção, da tecnologia empregada e dos insumos utilizados para, a partir desses fatores macro determinantes relacioná-los com a exposição da população ao agrotóxico.

"Esta definição amplia enormemente o campo tradicional, porque localiza os problemas da reprodução biológica, os problemas da reprodução psicológica, mas também inclui os problemas da reprodução econômica e ecológico-política" (SAMAJA, 2000 p 70).

Assim, com o objetivo geral de analisar indicadores de saúde ambiental relacionados ao uso agrícola de agrotóxicos e câncer no Estado de Mato Grosso e com os objetivos específicos de caracterizar o processo econômico, de produção agrícola e o uso de agrotóxicos e verificar associação entre o uso de agrotóxicos e a ocorrência de câncer, desenvolveu-se esta dissertação.

No percurso metodológico foram introduzidos alguns elementos teóricos orientadores da combinação das abordagens utilizadas, tendo em vista a necessidade de se pensar modelos que integrem os diversos condicionantes que compõem a complexa causalidade da doença, valorizando os aspectos socioambientais do processo saúde-doença. Este tem sido um desafio reconhecido por diversos centros de pesquisa e de organizações internacionais que atuam no campo da saúde e do desenvolvimento técnico-científico.

O Desafio da Abordagem Combinada

Vários enfoques têm sido propostos, nestas últimas décadas, para analisar as complexas relações entre os ambientes onde a vida cotidiana acontece e os padrões de saúde decorrentes da estrutura social, econômica, política e da organização do setor saúde.

Dentre os modelos interpretativos existentes sobre a explicação do caráter multidimensional no processo saúde-doença, optamos pela compreensão de Juan Samaja da situação de saúde, na perspectiva da teoria dos Sistemas Complexos Adaptativos e que serviu de fundamento teórico para a discussão dessa dissertação.

Segundo SAMAJA (2007) os problemas de saúde se situam em uma encruzilhada de múltiplas disciplinas e enfoques metodológicos e exigem integrar todas as perspectivas na compreensão dos fatos concretos. O autor delineou um modelo que situa as questões referentes às "situações de saúde" e "condições de vida" em um contexto amplo. Para ele, a compreensão da saúde é inerente à compreensão das condições de vida e das relações estabelecidas em um determinado espaço da reprodução social.

O autor discutiu os níveis de integração que conformam o fenômeno humano – em particular as articulações entre o individual e o coletivo – e propôs superar duas séries de erros simétricos, dois tipos extremos de reducionismo: o reducionismo fisicalista, que reduz a noção de saúde aos níveis inferiores (do sistema complexo ao nível orgânico, celular ou molecular) e o reducionismo holista que remete todo fato de saúde aos níveis superiores (os modos de produção, a estrutura de classes ou as formações culturais).

Para SAMAJA (2007), esses conceitos vão além da noção de nexo causal e concebem a noção de nexo funcional e ação comunicacional. Esse nexo só pode se dar na condição em que as partes disponham de sensibilidade no contexto onde operam e no qual o todo possa se apoderar da ação que desenvolvem suas partes.

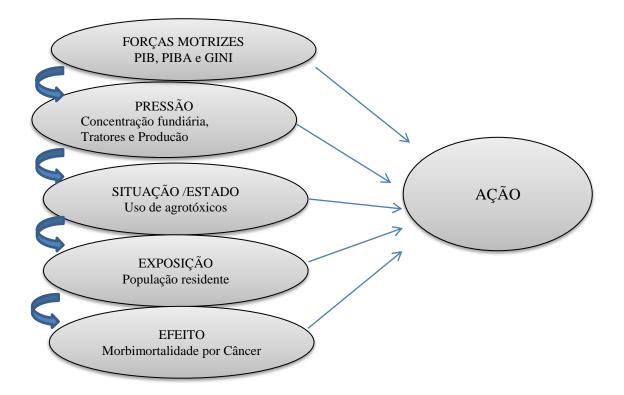
Então, o processo saúde-doença é a expressão do complexo sistema de situações determinantes e condicionantes, que tornam as populações mais ou menos vulneráveis aos processos de produção e de consumo que geram efeitos ambientais. Os fatores que levam a qualificar um efeito ambiental como significativo envolvem escolhas de natureza técnica, política ou social, sendo que os componentes e determinantes a serem considerados podem ser definidos de acordo com o interesse dos grupos envolvidos (SAMAJA, 2000).

Para CORVALAN et al.(2000) não existe uma maneira ideal de se organizar e visualizar a complexa relação desenvolvimento/meio ambiente/saúde, capaz, ao mesmo tempo, de possíveis interações e prioridades de ações para a saúde pública.

Estes condicionantes/ determinantes complexos de situações vêm sendo trabalhados nas análises da saúde e ambiente como indicadores integrados, em uma estrutura compreensiva, através da Matriz desenvolvida por CORVALAN et al. (2000) e representam várias dimensões relacionadas ao processo saúde-doença.

Esta metodologia, proposta pela OMS em 1998, tem por base o modelo conhecido como matriz de FPEEA (Força Motriz, Pressão, Estado/Situação, Exposição, Efeito, Ação) e estas iniciais correspondem aos estágios descritos na sequência onde, a partir da identificação das "forças motrizes" relacionadas aos processos de desenvolvimento, são geradas "pressões" associadas ao uso intensivo de determinados recursos naturais que contribuem na geração de "estado/situação" onde o ambiente se torna contaminado ou deteriorado, facilitando a existência da "exposição" humana a fatores ambientais que geram "efeitos" na saúde. Para cada uma destas categorias são construídos indicadores que favorecem o entendimento mais integral do problema, e a visualização dos impactos em cada nível de complexidade (CORVALAN, 2000; HACON et al., 2005).

HACON et al.(2005) entendem que o índice de saúde ambiental deve representar a relação existente entre as condições do ambiente e os efeitos à saúde, que podem ser ilimitadas. Para sua construção é necessário considerar as relações que sejam comprovadamente mais relevantes, ou seja, que apontam os efeitos na saúde, com o propósito de realizar intervenções, fixar metas e melhorar o bem estar humano.


Segundo BRIGGS (1999), os principais objetivos do uso de indicadores integrados são detectar situações relacionadas a problemas ambientais; monitorar tendências na saúde resultantes de exposições a determinantes/ condicionantes; comparar condições ambientais e de saúde em diferentes áreas, permitindo a identificação de áreas prioritárias; e avaliar o impacto de políticas e intervenções sobre as condições de saúde e ambiente.

A seleção de indicadores parte da busca das variáveis e das fontes de informação que melhor representem essa relação. Podem ajudar na definição das

estratégias específicas de prevenção e de mitigação dos impactos ambientais à saúde humana. Deve ser uma medida simples, construída, se possível, a partir de dados disponíveis por meio dos sistemas oficiais de informação, buscando-se interação entre a exposição e a situação de saúde da população estudada. Quando mensurados serão, portanto, resultantes da combinação de dados econômicos, sociais, ambientais e de saúde, a depender do tema em questão (VON SCHIRNDING, 1998).

Delineamento do estudo

Nesta dissertação, para demonstrar as inter-relações de diferentes níveis foram selecionados os indicadores apresentados na Figura 01, disponíveis em sistemas nacionais de informação, como representativos da situação sócio-econômica-ambiental e de saúde no estado de Mato Grosso, constituindo a matriz FPEEA (Força Motriz – Pressão – Estado – Exposição – Efeito – Ação) (OMS, 1998) para os anos entre os censos agropecuários 1996 e 2006.

- **Figura 01 -** Matriz FPEEA Traduzida de Briggs D. Environmental Health Indicators: framework and methodologies. Geneva. World Health Organization. 1999 e adaptada pela autora.
- a) Força Motriz determina a estrutura e dinâmica do modelo de desenvolvimento socioeconômico local que pode afetar a saúde humana. Foram considerados como fatores que influenciam os vários processos os seguintes indicadores:
- 1. Produto Interno Bruto (PIB) per capita Valor anual em reais, a preços de mercado, sobre a população total residente (IBGE, 2011).
- 2. Produto Interno Bruto (PIB) Agropecuário Valor Adicionado da Agropecuária anual em reais, calculado pela soma do valor da produção e outras receitas do estabelecimento menos as despesas de consumo intermediário com base nos Censos Agropecuários (IBGE, 2011).
- 3. Índice de Gini Mede o grau de desigualdade na distribuição da renda. Pode variar entre 0 (baixa desigualdade) e 1 (alta desigualdade). Censo demográfico a cada dez anos (IBGE, 2011).
- b) Pressão determina as pressões sobre o ambiente geradas pelas diferentes atividades econômicas, foram selecionados indicadores de agricultura: Censos Agropecuários realizados nos anos de 1996 e 2006 (IBGE, 2011).
- 1. Concentração fundiária Média entre o número de estabelecimentos agropecuários e a área total dos estabelecimentos agropecuários, em três classes: até 100 hectares, de 100 a 1000 hectares e mais de 1000 hectares (IBGE, 2011).
- 2. Número de tratores no estabelecimento, na responsabilidade do produtor conforme potência em duas classes: até 100CV e acima de 100CV (IBGE, 2011).
- 3. Produção dos principais bens agrícolas de Mato Grosso Produção de Soja, Algodão, Arroz, Milho e Cana-de-Açúcar, em toneladas (Ministério da Agricultura, Indústria e Comércio, 2011).

- c) Estado/Situação reflete a condição do meio ambiente, referindo o aumento na frequência e magnitude do efeito gerado pelos processos anteriores. Foi selecionado indicador proximal de exposição resultante do modelo de produção agrícola adotado:
- 1. Uso de agrotóxicos Calculou-se um coeficiente da quantidade de agrotóxicos em litros utilizado por hectare de lavoura temporária de cada município ao ano; no período entre 1996 e 2006 (IBGE, 2011).

Os dados do uso de agrotóxicos foram disponibilizados pelo Dr. Wanderlei Pignati do Núcleo de Pesquisa do Instituto de Saúde Coletiva da Área de Saúde, Ambiente e Trabalho – Avaliação dos Impactos dos Agrotóxicos na Saúde e Ambiente UFMT/ISC. Primeiramente os dados foram levantados junto ao Instituto de Defesa Agropecuária de Mato Grosso (INDEA-MT, 2006) e Instituto Brasileiro de Geografia e Estatística (IBGE, 2011). Os dados disponíveis referiam-se aos períodos de 2005 e 2006. Para obtenção, do uso de agrotóxicos dos anos de 1996 a 2004 utilizou-se como unidade de correção o volume de agrotóxico utilizado por hectare de cada tipo de lavoura temporária em cada município no ano de 2005 e posteriormente aplicou-se o valor de agrotóxicos por hectare às áreas plantadas dos anos anteriores.

- d) Exposição baseia-se nas condições que afetam a população alvo, refere-se à interação entre as pessoas e os perigos ambientais:
- 1. População residente selecionou-se indicador demográfico geral, pois poluentes como os agrotóxicos afetam direta ou indiretamente toda a população; coletaram-se os dados dos censos de 2000 e 2010, além das projeções intercensitárias para os demais anos, de cada município e do Estado de Mato Grosso (IBGE, 2011).
- e) Efeito determinam o grau do problema de saúde e podem variar em tipo, intensidade, e magnitude. Foram selecionados indicadores de morbidade e mortalidade por câncer:
- 1. Mortalidade por câncer óbitos por neoplasias malignas códigos C00 a C97 (Capítulo II Neoplasias) da CID 10, em residentes no Estado de Mato Grosso no

período de 1996 a 2006 (no primeiro estudo de Tendência e na sistematização) e em menores de 20 anos de idade, residentes em cada município no período de 2000 a 2006 (no estudo ecológico de associação) utilizando-se as informações dos bancos de dados de registros vitais do Ministério da Saúde - Sistema de Informações sobre Mortalidade (SIM, 2011) do Departamento de Informática do Sistema Único de Saúde (BRASIL/MS/DATASUS, 2011).

- 2. Morbidade: A incidência é conhecida pelos registros de câncer de base populacional (RCBP), que através de um processo contínuo e sistemático de coleta de dados registra todos os casos novos de câncer que ocorram em uma determinada população de uma área geográfica definida. Foram utilizados casos novos de neoplasias malignas códigos C00 a C97 (Capítulo II Neoplasias) da CID 10, em menores de 20 anos de idade, residentes em cada município no período de 2000 a 2005, do RCBP de Mato Grosso. Este RCBP foi criado em 1999, sendo a coleta de dados iniciada no ano de 2000. Encontra-se sob a coordenação do serviço de vigilância epidemiológica da Secretaria de Estado da Saúde de Mato grosso, e recebe suporte financeiro fixo da Secretaria de Vigilância em Saúde/MS (SVS/MS), conforme regulamentado pela portaria de nº 2.607, de 28 de dezembro de 2005.
- f) Ações Recomendações integradas de meio ambiente e saúde exequíveis, desenhadas, implantadas e monitoradas intersetorialmente.

Contexto e local de estudo

De acordo com o Censo 2010 o Estado de Mato Grosso possui uma área de 903.329,700 Km2 e uma população de 3.033.991 habitantes (IBGE, 2011). Esta população está distribuída em 141 municípios, sendo que 1/3 se encontra em Cuiabá e Várzea Grande, com 0,1% dos produtos agropecuários e o interior do estado, com 2/3 da população, concentra 99,9% da produção agrícola e florestal e 95% das

indústrias que beneficiam cereais, cana, algodão, carne bovino/suíno/aves, couros e madeira (PIGNATI, 2007).

População e período de estudo

A população utilizada no estudo foi a dos censos de 2000 e 2010, além das projeções intercensitárias para os demais anos, de cada município e do Estado de Mato Grosso, fornecidas pelo Instituto Brasileiro de Geografia e Estatística (IBGE, 2011).

O período de estudo foi definido entre os Censos Agropecuários de 1996 e de 2006 e corresponde a uma mudança na economia brasileira, com o abandono das políticas de substituição de importações no final dos anos oitenta, reformas que conduziram à estabilização macroeconômica (Plano Real), à privatização de empresas estatais (Plano Nacional de Desestatização) e à liberalização comercial. Os mercados domésticos foram desregulados e foi estabelecida uma união aduaneira, o MERCOSUL. Foram observados significativos cortes tarifários e a eliminação de barreiras não tarifárias ao comércio (BRASIL, 2009).

Processamento e análise de dados

Após a etapa de levantamento dos dados, foram selecionados os indicadores disponíveis em sistemas nacionais e estaduais de informação, que melhor contemplaram os componentes do modelo da matriz de FPEEEA, conforme descritos acima. Em relação aos dados disponíveis, foram verificados os limites e/ou qualidade dos mesmos, os níveis de agregação e frequência/regularidade dos registros. Para a análise de variação dos resultados entre os anos de 1996 e 2006 utilizaram-se

planilhas dinâmicas do Microsoft Excel. Simultaneamente foi utilizado o pacote estatístico SPSS versão 15.0, para determinar as matrizes de correlações com suas respectivas significâncias.

Optou-se pela análise dos indicadores por municípios. Procedeu-se análise multivariada dos indicadores através da sistematização dos componentes de forma a construir índices integrados de saúde e ambiente. Tendo em vista os diferentes componentes em que mudanças ambientais possam impactar nas condições de saúde da população, as correlações foram feitas entre os indicadores do mesmo componente, bem como com o componente a seguir da cadeia (HACON, 2008).

Em cada componente foi utilizada a média dos indicadores selecionados, levando-se em consideração as diferentes fontes e unidades de mensuração dos mesmos. A média dos indicadores foi convertida em índice (medida padronizada). Isso porque, diferentemente dos indicadores, nos índices o menor valor corresponde ao pior resultado e o maior valor ao melhor resultado. Foram então obtidos índices com variação de 0 a 1 sem unidade de medida. Para a conversão de indicadores em índices utilizou-se a fórmula:

$$\text{Índice} = \frac{(\text{valor máximo} - \text{valor observado})}{(\text{valor máximo} - \text{valor mínimo})}$$

Estes Índices Integrados foram aplicados aos municípios do estado de Mato Grosso de forma categorizada, permitindo análise dos resultados nos anos de 1996 e 2006. Os resultados foram categorizados em Pior (0 a 0,7), Médio (0,71 a 0,89) e Melhor (0,9 a 1).

Limitações do estudo

Com relação às limitações, a principal delas diz respeito à utilização do método em si. A não familiaridade com a aplicação da matriz pode levar a avaliação

inadequada dos problemas e/ou a escolha de indicadores pouco representativos e o método pode não descrever suficientemente uma determinada situação. Essa limitação é reforçada pela ausência de literatura que discuta o método e a aplicação da matriz FPEEA.

No estudo ecológico as limitações estão descritas na literatura como: falácia ecológica, quando não é possível associar exposição e doença no nível individual; dificuldade de controlar os efeitos de potenciais fatores de confundimento; os dados de estudos ecológicos representam níveis de exposição média em vez de valores individuais reais; falta de disponibilidade de informações relevantes, dificuldade de separar estatisticamente efeitos específicos de certas variáveis (colinearidade).

Considerações éticas

O projeto de pesquisa foi avaliado e aprovado pelo Comitê de Ética em Pesquisa do Hospital Universitário Júlio Muller no dia 13 de abril de 2011 sob o protocolo nº 008/CEP-HUJM/2011 (conforme Anexo I.).

CAPÍTULO I

CRESCIMENTO ECONÔMICO E DEGRADAÇÃO AMBIENTAL

"las investigaciones científicas en el tema salud deben dirigirse no solo sobre los aspectos estructurais y funcionales de su objeto, sino también, y ante todo, sobre la historia, entendida de dos maneras — de manera divergente (como la presencia del futuro, los procesos de surgimiento de nuevos niveles de realidades a partir de los conflictos y desequilibrios de los niveles precedentes); y de manera convergente (como la presencia del pasado en lo actual, en los ciclos reproductivos de los niveles anteriores por medio de los cuales se mantiene lo ya existente)" (SAMAJA, 2007, p. 47).

1. CRESCIMENTO ECONÔMICO E DEGRADAÇÃO AMBIENTAL

A relação entre crescimento econômico e degradação ambiental tem sido o mote de conferências mundiais e pactuações entre países do mundo para a busca da sustentabilidade da vida no planeta. A questão principal reside em como conciliar crescimento econômico e preservação ou conservação ambiental e /ou como diminuir os efeitos provocados pela utilização dos recursos naturais pela sociedade humana.

A noção de sustentabilidade e/ou desenvolvimento sustentável embora polissêmica, vem sendo incorporada ao discurso oficial e à linguagem comum e tem se difundido amplamente na sociedade. Paralelamente, buscam-se as interligações e efeitos dessa proposta com e para a saúde dos grupos humanos (PIGNATTI, 2005; RIGOTTO & AUGUSTO, 2007).

Nas últimas décadas a situação do meio ambiente tem preocupado as autoridades governamentais e os cidadãos em geral, tanto nos países industrializados quanto nos de economia periférica. Cada vez mais um número maior de pessoas vê na degradação ambiental uma ameaça à saúde e ao bem-estar social (LEFF, 2001; BREIHL, 2006; RIGOTTO, 2003; CÂMARA et al., 2003).

Para LEFF (2001), a degradação ambiental se manifesta como sintoma de uma crise de civilização, marcada pelo modelo de modernidade regido pelo predomínio do desenvolvimento da razão tecnológica sobre a organização da natureza. Entende a crise ambiental como o ápice de um processo de rompimento de um dado equilíbrio entre sociedade e natureza, uma mudança dramática nas condições naturais e naquelas produzidas pelos seres humanos, ameaçando todas as formas de vida.

Na Conferência das Nações Unidas sobre o Meio Ambiente celebrada em Estocolmo, em 1972, definiu-se o meio ambiente como "[...] o conjunto de

componentes físicos, químicos, biológicos e sociais capazes de causar efeitos diretos ou indiretos, em um prazo curto ou longo, sobre os seres vivos e as atividades humanas" (BRASIL, 1997).

A Política Nacional do Meio Ambiente (PNMA) brasileira, estabelecida pela Lei 6938 de 1981, define meio ambiente como "o conjunto de condições, leis, influências e interações de ordem física, química e biológica, que permite, abriga e rege a vida em todas as suas formas" (BRASIL, 1981).

LEFF (1994) ressignifica o sentido do *habitat* como suporte ecológico e do habitar como forma de inscrição da cultura no espaço geográfico, conceituando ambiente como uma visão das relações complexas e sinérgicas gerada pela articulação dos processos de ordem física, biológica, termodinâmica, econômica, política e cultural.

A Organização Mundial da Saúde (OMS, 2005) constata que o padrão predominante de desenvolvimento continua a transformar ecossistemas de forma irreversível, expandindo suas fronteiras, colonizando novos territórios e gerando projetos agrícolas, industriais, de extração e de energia que são lucrativos em curto prazo, mas exploram os recursos naturais negligentemente.

O modelo atual de crescimento econômico é considerado injusto e insustentável, fomentando padrões de consumo que têm fortes preferências por bens materiais de vida curta que se tornam obsoletos rapidamente, com grande conteúdo de resíduos não biodegradáveis. Ao mesmo tempo, a polarização inaceitável na distribuição de renda e de riquezas permanece e até mesmo aumentou, na maioria dos países, correlacionando-se fortemente às grandes disparidades em termos de desfechos em saúde (LEFF, 1994; PERIAGO et al., 2007).

FURTADO (2000) assinala que a ação produtiva do homem tem cada vez mais como contrapartida processos naturais irreversíveis, tais como a degradação de energia, tendentes a aumentar a entropia do universo. O estímulo às técnicas apoiadas na utilização intensiva de energia, fruto da visão em curto prazo engendrada

pela apropriação privada dos recursos não renováveis, agrava essa tendência, fazendo do processo econômico uma ação crescentemente predatória.

Para BELLEN (2007), o desenvolvimento da economia global baseia-se em uma lógica em que o crescimento de curto prazo se sobrepõe ao crescimento de longo prazo, afetando os ecossistemas e degradando o capital natural (serviços oferecidos pelos ecossistemas). Esta lógica é estimulada e favorecida pelo fato de as contas nacionais não registrarem explicitamente os custos ambientais desse crescimento da economia global, já que o principal indicador, como o PIB, trata o incremento quantitativo da economia (crescimento) como sinônimo de melhoria qualitativa (desenvolvimento).

No entendimento de SACHS (2008), os objetivos do desenvolvimento vão além da mera multiplicação da riqueza material, o crescimento econômico é uma condição necessária, mas de forma alguma suficiente (muito menos um objetivo em si mesmo) para se alcançar a meta de uma vida melhor, mais feliz e mais completa para todos. O desenvolvimento sustentável obedece ao duplo imperativo ético da solidariedade com as gerações presentes e futuras e exige a explicitação de critérios de sustentabilidade social e ambiental e de viabilidade econômica. Portanto, traz consigo a promessa da modernidade inclusiva propiciada pela mudança estrutural.

Na avaliação de FREITAS & PORTO (2006), a partir da Revolução Industrial, particularmente no final do século XIX e ao longo do século XX, o crescimento e a expansão dos processos produtivos com a transformação de energias e materiais para a produção de matérias-primas e bens de consumo (industrialização) tornou-se gigantesco e foi acompanhado por um processo de crescimento e urbanização da população.

Esse processo histórico formativo de um sistema econômico mundial, segundo FURTADO (2000), apresenta duas faces distintas. A primeira retrata a transformação do modo de produção, ou seja, o processo de destruição total ou parcial das formas familiar, artesanal, senhorial e corporativa de organização da produção, e de progressiva implantação de mercados de ingredientes da produção

(mão-de-obra e recursos naturais apropriados privadamente). Essa transformação no sistema de dominação social responsável pela organização da produção abriu mais amplos canais à divisão do trabalho e ao avanço das técnicas, o que realimentaria o processo acumulativo.

A segunda face, para o autor, reflete a ativação das atividades comerciais, mais precisamente, da divisão do trabalho inter-regional. As regiões em que se localizou a aceleração de acumulação tenderam a especializar-se naquelas atividades produtivas em que a revolução em curso no modo de produção abria maiores possibilidades ao avanço da técnica, transformando-se em focos geradores do progresso tecnológico.

GIDDENS (1991) aponta a difusão das tecnologias de máquina como um dos traços marcantes da industrialização. Essa difusão afeta os estados primordialmente agrícolas e foi responsável pela criação de um mundo no qual há mudanças ecológicas reais ou potenciais de um tipo daninho que afeta a todos no planeta.

O crescente processo de industrialização, que vem ocorrendo desde o século passado, somado ao desenvolvimento de novas tecnologias de produção e à grande quantidade de produtos lançados no mercado, tem causado danos à saúde do homem e aos ecossistemas. Estes produtos são denominados contaminantes ambientais e constituem o principal efeito tecnológico, abrangendo o meio ambiente em um sentido irrestrito, podendo levar a consequências desastrosas para a população do planeta (BRILHANTE & CALDAS, 1999).

Os resultados do Millennium Ecosystem Assessment - MEA apontam que a Revolução Verde foi projetada para elevar o fornecimento de alimentos e não para erradicar a pobreza ou a fome e que o processo de conversão de áreas de florestas em áreas de agricultura, com consequente degradação ambiental, acabará por comprometer a própria expansão dos serviços de provisão e produção de alimentos (POLAK, 2005).

Segundo esse relatório, uma das mais significativas mudanças na estrutura dos ecossistemas foi a transformação de aproximadamente 1/4 da superfície do planeta em sistemas cultivados. Esse processo tem início nos séculos XVIII e XIX, mas se intensifica a partir da Segunda Guerra Mundial.

As intensas e amplas mudanças que vêm ocorrendo nos ecossistemas terrestres, particularmente a partir da conversão de áreas de florestas em áreas de cultivos, assim como a ampliação da urbanização, que se aproxima de áreas de florestas ou as invade, vem contribuindo para alterar não só a capacidade de provisão dos ecossistemas, mas também, e principalmente, a capacidade de regulação de doenças (SUTHERST, 2004).

A expansão dos sistemas cultivados vem contribuindo para transformar a estrutura (*habitats* e espécies presentes em uma localidade particular) e os processos dos ecossistemas, incluindo os ciclos biogeoquímicos. Como a capacidade dos ecossistemas em prover serviços deriva diretamente da operação desses ciclos naturais relacionados aos serviços de suporte dos ecossistemas, seu comprometimento acaba por ameaçar a sustentabilidade ambiental e da saúde (PIMM & JENKINS, 2005).

Assim, ainda que a transição para uma sociedade industrial e o processo de globalização tenham resultado em um crescimento da economia e no aumento da renda per capita, ameaçam a sustentabilidade ambiental do planeta, com consequências para a saúde e o bem-estar das populações (FREITAS & PORTO, 2006).

Estes processos históricos ocorrem de maneira diferenciada nas áreas do território brasileiro dependendo do estágio do crescimento econômico, social e político dos estados da federação.

O Estado de Mato Grosso, inserido neste processo apresenta algumas particularidades físicas, econômicas e sociais resultantes dos movimentos de ocupação e expansão das fronteiras agrícolas brasileiras, historicamente pautadas na

apropriação dos recursos naturais sem respeitar os limites da capacidade suporte dos ecossistemas naturais e efeitos na saúde humana, em ciclos de produção e crescimento econômico de acordo com o mercado.

1.1 Caracterização histórica do crescimento econômico do Estado de Mato Grosso

O crescimento econômico de Mato Grosso pode ser dividido segundo os ciclos que deram dinamismo e atraíram população para o estado: mineração, pecuária extensiva e agropecuária capitalista.

O movimento inicial de ocupação do estado data do início do século XVIII, com assentamentos nas regiões de Cuiabá até o leste, objetivando promover a exploração de pedras preciosas e ouro (GOMES & SILVA, 1998). Após a ocupação inicial estimulada pela mineração, a principal atividade econômica passou a ser a pecuária extensiva e a agricultura de subsistência, caracterizando a ocupação por grandes propriedades pastoris (OLIVEIRA, 1997). De maneira geral, Mato Grosso realizava a etapa de cria dos rebanhos, vendidos a intermediários paulistas e mineiros para recria e engorda. A pecuária visava os mercados do Sudeste. A integração intensificou-se com a Ferrovia Bauru–Corumbá (GUIMARÃES & LEMES, 1998).

Na primeira metade do século XX, ocorrem os movimentos de ocupação mais efetivos do estado quando no Brasil ocorre um grande crescimento populacional e econômico, com a expansão do mercado interno e a formação de indústrias de infraestrutura. A expansão das fronteiras agrícolas para o Centro-Oeste também foi estimulada pela consolidação das fronteiras agrícolas do oeste paulista e noroeste do Paraná.

BECKER (1982) entende fronteira como um espaço social, político e valorativo a ser incorporado na divisão nacional e internacional do trabalho, a partir de políticas de desenvolvimento regional elaboradas pelo Estado. Para a autora, esta fronteira seria um espaço com elementos fundamentais do modo de produção dominante, mas, ao mesmo tempo, ainda não plenamente estruturado, em incorporação ao espaço global/fragmentado. É relevante compreender que, em sua expansão, o modo de produção capitalista se apropria do espaço, articulando-se de diferentes maneiras com as formas de organização da produção preexistentes, e como, através dessas diferentes maneiras de articulação, rege as relações interregionais, dando origem às regiões.

Os movimentos de ocupação a partir da década de 30 ocorreram principalmente por meio de políticas de colonização oficial. Foram adotadas políticas específicas para o desenvolvimento da região central do Brasil, com forte conotação nacionalista, sob o lema "Marcha para o Oeste".

Tratava-se de um projeto amplo, cujo objetivo era unificar as fronteiras econômicas e políticas do Brasil, garantindo dessa forma a "integridade do território nacional". Foi estabelecido sob a guarda do regime militar, estrategicamente elaborado como política de segurança nacional, assentado nos acordos militares entre o Brasil e os Estados Unidos e como forma de frear o avanço dos movimentos de esquerda na América Latina (OLIVEIRA, 1997).

O governo falava em 'ocupação dos espaços vazios', embora a região estivesse ocupada por dezenas de etnias indígenas e também por uma população camponesa já presente na área pelo menos desde o século XVIII, ainda que dispersamente (MARTINS, 1997). Para OLIVEIRA (1993) o camponês deve ser visto como um trabalhador que, mesmo expulso da terra, com frequência a ela retorna, ainda que para isso tenha que (e)migrar; ou seja, como um trabalhador criado pela expansão capitalista, que quer entrar na terra.

Assim, as estratégias de ocupação da região ocorreram em diversos governos, através de Planos Governamentais.

Durante o primeiro período de governo de Getúlio Vargas (1930-1945), ocorreu uma reduzida ocupação, que se concentrou principalmente no sul de Mato Grosso, apesar da criação da Fundação Brasil Central - FBC (1941), com a finalidade específica de realizar a colonização da região central do país (ABREU, 2001).

Em 1943 foi criada a Colônia Agrícola Nacional de Dourados, no sul de Mato Grosso, uma área de terras com mais de 6.000 lotes que mediam cerca de 30 hectares em média e era voltada para a agricultura familiar, centrada na policultura, a distribuição das terras foi feita gratuitamente, atingindo agricultores sem terra, de origem predominantemente nordestina. (BARBOSA-FERREIRA, 1988).

Para efetivar a ocupação de áreas mais ao norte do estado, o governo federal promoveu iniciativas como a Expedição Roncador/Xingu, que em 1943 saiu de Barra do Garças com destino a Santarém. O primeiro posto-base da expedição, localizado às margens do Rio das Mortes, deu origem à atual cidade de Nova Xavantina, onde foi sediada a FBC (HOGAN et al., 2000).

Segundo WAGNER (1986), durante este período inicial de ocupação a derrubada de florestas ocorria indiscriminadamente, combinando a exploração madeireira com a expansão horizontal da agricultura. As técnicas de plantio utilizadas eram bastante atrasadas, utilizando largamente as queimadas, ocorrendo uma acentuada degradação das terras. Os períodos iniciais de ocupação agrícola, caracterizaram-se pela baixa utilização de tecnologia, sendo a sequência de culturas agrícolas mais frequente, após o desmatamento, o cultivo de arroz de sequeiro por um período de 2 ou 3 anos e posteriormente a instalação de pastagens.

Durante o período que ficou conhecido como "Estado Novo", no Governo de Vargas (1951-1954), foram criados mecanismos de financiamento à expansão da fronteira agrícola, com a instituição da Carteira de Crédito Cooperativo do Banco do Brasil, transformada posteriormente no Banco Nacional de Crédito Cooperativo, com o objetivo de aumentar o incentivo à cultura de subsistência desenvolvida por pequenos e médios produtores, possuía uma linha específica para a colonização, com o objetivo de apoiar as iniciativas particulares. Em 1954 foi criado o Instituto

Nacional de Imigração e Colonização que tinha o objetivo de revitalizar os núcleos de colonização existentes no país (ABREU, 2001).

Outra medida importante foi a implantação do Plano Viário Nacional (1951) que viabilizou a construção de rodovias tronco em vastas áreas mato-grossenses, que a partir da década de 50, constituíram o principal determinante para a ocupação realizada com a agricultura de subsistência na região (BRASIL,1974).

A abertura da rodovia Belém-Brasília indicava um novo modo de ocupar as regiões de fronteira do país, integrando-as ao modo de produção guiado pelo mercado (FIGUEIREDO, 1993).

A incorporação de Mato Grosso ao espaço econômico nacional ocorreu devido à industrialização e ao aumento de população nas áreas de ocupação mais antigas. A expansão da fronteira agrícola, viabilizando a instalação de grandes empresas, foi a partir do Plano de Metas do Governo Juscelino Kubitschek (1956-1961) cujas metas para o setor agrícola estavam centradas no desenvolvimento de setores de infraestrutura: armazéns e silos, armazéns frigoríficos, matadouros industriais, mecanização da agricultura e fertilizantes (ABREU, 2001).

O plano de metas de acordo com MÜLLER (1989) realizou-se com base em uma divisão regional do trabalho definida a partir do fortalecimento industrial do Sudeste do país, o que levou a transformações no sistema econômico do Brasil, impondo o fim do isolamento regional e expandindo a circulação inter-regional. A estratégia de industrialização por substituição de importações, então adotada, buscava proteger e fortalecer o setor urbano-industrial do país, penalizando o setor agropecuário. A estratégia de controle da inflação baseou-se na manutenção dos preços dos alimentos a níveis baixos e a moeda nacional sobrevalorizada, o que incentivava a importação de equipamentos industriais e penalizava o setor exportador agrícola. Entre 1930 e 1960 a agricultura ficou à margem do processo de industrialização, ocorrendo algumas importações de tratores e fertilizantes dirigidas a algumas regiões, com pouco impacto sobre o modo de produção tradicional.

Apesar das restrições, no período 1948-1969 a agricultura se expandiu em média 4,2% ao ano no país, superando uma média de crescimento populacional de 2,9% ao ano, apoiada na expansão de frentes de agricultura comercial em áreas de fronteira: do crescimento total da agricultura observado no período, 90,7% foi causado pela incorporação de novas terras à produção (MUELLER, 1992).

Na década de 50, mudaram também as políticas de ocupação da região, com a incorporação de projetos privados de colonização. Os investimentos públicos em infraestrutura viária, fator fundamental na integração das regiões centrais do país, foram resultados de um modelo de desenvolvimento industrial fortemente apoiado na indústria automobilística e em suas ramificações. Durante o Plano de Metas foram construídas as principais rodovias de Mato Grosso, as rodovias BR 364, BR 163, BR 230, BR 267 e BR 262 e Cuiabá-Santarém. As rodovias aceleraram formas espontâneas e dirigidas de ocupação, que ocorreram em sua área de influência (HOGAN et al., 2000).

Além da ação estatal, a ocupação das regiões de cerrado também foi viabilizada por fatores físicos, como a facilidade de remoção da vegetação nativa, temperatura, luminosidade, topografia, fácil mecanização do solo e grande disponibilidade de calcário (HOGAN et al., 2000).

No fim do Governo de Juscelino Kubitschek o modelo de substituição de importações entra em crise, e a crescente instabilidade política culminou com o golpe de 64. O governo militar constituído adotou, então, um modelo de modernização conservadora, estimulando o aumento das exportações e a entrada de capitais externos, concedendo incentivos a alguns setores agropecuários, principalmente para aqueles voltados para o mercado externo, com pesados investimentos em inovações técnicas, fundamentais para a consolidação do agronegócio exportador (MUELLER, 1992).

Pela definição original, agronegócio é a soma total das operações de produção e distribuição de suprimentos agrícolas, das operações de produção nas unidades agrícolas, do armazenamento, do processamento e distribuição dos produtos

agrícolas e itens produzidos a partir deles. Dessa forma, engloba os fornecedores de bens e serviços para a agricultura, os produtores rurais, os processadores, os transformadores e distribuidores e todos os envolvidos na geração e fluxo dos produtos de origem agrícola até o consumidor final. Participam também desse complexo os agentes que afetam e coordenam o fluxo dos produtos, tais como o governo, os mercados, as entidades comerciais, financeiras e de serviços (DAVIS & GOLDBERG, 1957).

Este novo modelo produziu transformações significativas na gestão e circulação da produção, com grande aumento na área cultivada, novas tecnologias e produtos, que se expandiam, reduzindo dramaticamente a cobertura vegetal original dos ecossistemas Cerrado e Amazônia e mudando as formas de ocupação agrícola anteriores (MÜELLER, 1992).

Um dos motivos que levaram o Governo a adotar políticas de estímulo à expansão agrícola foi o aumento da inflação no período, o que levou à adoção de uma política econômica baseada em teorias econômicas estruturalistas, que viam na rigidez da oferta agrícola a principal causa da inflação. Com o objetivo de aumentar a produção, em 1965 foi criado o Sistema Nacional de Crédito Rural (SNCR) e reformulada a Política de Garantia de Preços Mínimos (PGPM) para produtos agrícolas, com a operacionalização de dois mecanismos: as aquisições do Governo Federal e os empréstimos do Governo Federal, que tinham o objetivo de financiar pequenos e médios produtores. A partir da década de 70 o crédito rural se ampliou substancialmente, mas acabou sendo dirigido para uma pequena parcela dos produtores, devido aos mecanismos administrativos e operacionais do SNCR e da PGPM (COELHO, 2001).

De acordo com BRANDÃO (1988), o aumento no volume do crédito acabou causando distorções nos mercados de terras, elevando os preços das mesmas e levando a uma maior concentração fundiária: os bancos aumentaram os requisitos necessários para conceder os empréstimos, exigindo terras como garantia. Assim, o crédito foi concedido aos possuidores de terra, aumentando-se assim a demanda por terras, que tiveram seu preço (ou aluguel) aumentado; verificaram-se no Brasil

aumentos substanciais do preço da terra entre 1972 e 1977, época em que o crédito rural se amplia significativamente.

Também foram criados programas nacionais para a produção de insumos modernos, como o Fundo de Desenvolvimento da Agricultura (FUNDAG), de 1970, que estimulou a indústria de insumos químicos através de financiamento aos produtores, e do Plano Nacional de Fertilizantes e Calcário Agrícola, de 1974, que visou ampliar a produção de insumos nitrogenados e fosfatados dentro do Brasil (BARROS & MANOEL, 1988).

A partir da década de 70 foram criados programas específicos para o desenvolvimento da agricultura comercial no estado, viabilizadas por um aparato institucional que incluiu a Superintendência do Desenvolvimento do Centro-Oeste (SUDECO), a Superintendência do Desenvolvimento da Amazônia (SUDAM), a Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA), o Instituto Nacional de Colonização e Reforma Agrária (INCRA) e o Banco do Brasil, dentre outros. Na esfera estadual os programas foram conduzidos pela Empresa de Pesquisa Agropecuária de Mato Grosso (EMPA/MT) (HOGAN et al., 2000).

O Programa de Integração Nacional (PIN) foi criado em 1970 (decreto-lei nº 1.106, de 16 de junho de 1970) com a finalidade específica de financiar o plano de obras de infraestrutura, nas regiões situadas nas áreas de atuação da Superintendência do Desenvolvimento do Nordeste (SUDENE) e da SUDAM, além da concessão de incentivos fiscais para empresas que se instalassem na área coberta pelo plano. Também programas especiais de estímulo à colonização, através da construção de agrovilas adjacentes a rodovias, principalmente às margens da BR-364, que ligava Cuiabá a Porto Velho, e da BR-163, que ligava Cuiabá a Santarém (OLIVETTE, 1992).

Para CARDOSO & MÜLLER (1977), um indicador de que o governo via nas obras do Centro-Oeste a solução dos problemas nordestinos foi a construção da Rodovia Cuiabá-Santarém, que não constava no Plano Nacional de Viação de 1967;

sua construção foi decidida em 1970, com o intuito de ligar o Nordeste à Amazônia e ocupar flagelados da seca nas obras e em assentamentos.

De acordo com os mesmos autores, os incentivos da SUDAM nas décadas de 60 e 70 viabilizaram a abertura de grandes fazendas no Nordeste de Mato Grosso, por grandes grupos estrangeiros como Anderson Clayton, Goodyear, Nestlé, Mitsubishi, Liquifarm, Bordon, Swift, Camargo Correa, Bradesco, Mappin, entre outros. A SUDAM recusava projetos com menos de 25.000 ha, na época a metragem mínima para garantir rentabilidade na exploração extensiva de pecuária na Amazônia. Em 1974, a SUDAM teve grande participação no desenvolvimento do Mato Grosso, com 192 projetos. Após o PIN sucederam-se vários planos especiais com objetivos específicos:

O PRODOESTE (Plano de Desenvolvimento da Região Centro-Oeste) foi criado em 1971 e executado pela colaboração entre os governos federal, estadual e o setor privado. Coube ao Governo Federal a construção da rede viária básica, a regularização do curso dos rios e obras de saneamento em municípios do Pantanal Mato-grossense. O governo estadual se responsabilizou pela construção de estradas vicinais, e o setor privado se encarregou de montar uma rede de silos, armazéns e frigoríficos, financiados pelo Banco do Brasil (ABREU, 2001).

O POLOAMAZÔNIA foi instituído em setembro de 1974 e previa a instalação de 15 pólos de desenvolvimento na região Amazônica, através do estímulo à instalação de empresas de mineração e agropecuária. No Mato grosso foram beneficiadas as regiões Xingu-Araguaia e Aripuanã (COSTA, 1979).

No POLOCENTRO (II PND -1975-1979) houve a concessão de crédito subsidiado e a construção de infraestrutura em doze diferentes locais do Cerrado, selecionados com base em critérios como a existência de depósitos de calcário e a presença de infraestrutura básica, como estradas e eletrificação rural (14,7% no Mato Grosso). Os projetos aprovados beneficiaram principalmente estabelecimentos acima de 1.000 hectares (39% dos projetos), que absorveram 60% dos recursos totais do programa. Além de não promoverem a distribuição de terras, os projetos financiados

pelo POLOCENTRO intensificaram o desmatamento de grandes áreas de Cerrado (COELHO, 2001).

O POLONOROESTE (Programa para Desenvolvimento Integrado do Noroeste) iniciou-se em 1981 abrangendo uma área de 410.000 km2, incluindo Rondônia e parte de Mato Grosso. Além da pavimentação da BR 364, o plano tinha como objetivo beneficiar cerca de 30.000 famílias que já haviam colonizado o noroeste do país e criar condições para assentar outras 15.000. Captou recursos do Banco Mundial, que condicionou o empréstimo ao cumprimento de metas sociais e ecológicas, como reorganização fundiária e proteção ao meio ambiente e às comunidades indígenas. Estes objetivos não foram cumpridos pois a população que se deslocou para as áreas do projeto foi bem maior do que a prevista, e a maioria dos colonos dedicaram-se à pecuária (FIGUEIREDO, 1993).

Em 1976, um acordo de cooperação entre governos do Brasil e Japão, Japan International Cooperation Agency (JICA) deu origem ao PRODECER (Programa de Cooperação Nipo - Brasileiro para o Desenvolvimento dos Cerrados). No ano de 1979 foi criada a Companhia de Promoção Agrícola - CAMPO, uma empresa mista de capital público e privado, brasileiro e japonês, que tinha como objetivo planejar, assistir e coordenar o PRODECER (LEANDRA DA SILVA, 2000).

O PRODECER dirigiu a maior parte dos seus projetos para a agricultura familiar, em assentamentos de colonos selecionados por cooperativas credenciadas, e mostrou preocupações com o meio ambiente, com exceção dos projetos de desmatamento para a pecuária extensiva (COELHO, 2001).

De maneira geral, as áreas de fronteira, ao se tornarem aptas para a agricultura empresarial acabam sendo apropriadas por agentes econômicos externos, que impõe uma nova forma de produzir. A construção de infraestrutura, que permite a produção e venda com lucro, também é outro fator de atração de capitais e de consequente mudança no uso da terra e nas relações de trabalho. Durante as décadas de 60 e 70 as áreas outrora desbravadas por pequenos agricultores passam a ser propriedade de empresas ou de produtores capitalizados do sul e do sudeste do país,

que desenvolvem uma agricultura integrada à indústria e aos mercados interno e externo, mais intensiva no uso de recursos naturais (HOGAN et al, 2000).

O processo concentrador também implicava muitas vezes na expulsão sistemática dos ocupantes das terras, causando conflitos geradores de insegurança e mortes. Aos colonos expulsos restava migrar para novas áreas de fronteira, trabalhar como assalariados ou migrar para centros urbanos regionais e extra regionais. As políticas oficiais de colonização também se transformavam, em muitos casos, em atividades especulativas, em que as rendas agrícolas importavam menos do que a própria valorização das terras. Os especuladores legitimavam a ocupação com a exploração da madeira de lei, seguida da exploração pecuária extensiva, uma atividade ideal para a ocupação ociosa de terras, devido aos baixos custos de produção. A pecuária improdutiva, além de consolidar a propriedade das terras, dava acesso aos subsídios do governo (ROMEIRO & REYDON, 1998).

Para FIGUEIREDO (1993) a ocupação capitalista nas regiões de fronteira implicou não só em mudanças econômicas e sociais, mas também em formas de produção mais agressivas ao meio ambiente do que aquelas adotadas pelas populações tradicionais.

O ritmo e a intensidade com que se realizou tal ocupação significou uma ruptura com as atividades que se reproduziam no "vazio demográfico", dentro de uma diversidade social e econômica que abrigava, basicamente, uma população constituída de índios, de ribeirinhos e de remanescentes nordestinos, muitos dos quais acaboclados, trazidos pelos sucessivos picos da economia extrativista.

Neste universo, praticava-se o extrativismo vegetal, a caça, a pesca e uma agricultura praticamente de subsistência, além de uma pequena indústria local, formando um conjunto de atividades bastante adaptado ao suporte natural, embora fundamentado na exploração de mão de obra, principalmente no caso da borracha e da castanha, baseado no sistema de aviamento, a economia extrativista não implicava na destruição do ecossistema (FIGUEIREDO, 1993).

WARNKEN (1999) entende que os principais objetivos do governo com a política de modernização das lavouras de grãos do Mato Grosso, a partir dos anos 70, foram expandir a oferta interna de gêneros agropecuários, levando a aumentos nas exportações, diminuição dos preços internos dos alimentos, estímulo ao desenvolvimento industrial e ocupação do território nacional.

A viabilidade da expansão das lavouras comerciais foi garantida pela política de preços uniformes para derivados do petróleo no varejo, mantida de 1978 até 1995, financiada pelo Fundo de Preços Uniformes de Frete (FUP). Os recursos do fundo vinham de uma taxa cobrada sobre os preços dos combustíveis no varejo; desta maneira, essa política atuava transferindo renda dos consumidores localizados perto das refinarias para os consumidores de lugares mais distantes (WARNKEN, 1999).

Com isso, os grandes beneficiados pelas políticas agrícolas aplicadas no período 1970-1989 foram os produtores de grãos. A área plantada com soja e a produção aumentaram no período. Já as culturas tradicionais, que tiveram acesso limitado a crédito e pouca atenção no desenvolvimento de inovações que incrementassem a produtividade, tiveram sua participação reduzida. Estavam então colocadas as condições que permitiriam a expansão da agroindústria no Mato Grosso.

As reformas estruturais introduzidas em 1990, com a abertura comercial, privatização e desregulamentação da economia impactaram positivamente o agronegócio. Os impostos à exportação e o controle de preços foram eliminados e os mercados agrícolas ficaram expostos à competição internacional (BRASIL, 2009).

A viabilidade econômica da agricultura de exportação encontra-se no estabelecimento de uma infraestrutura de escoamento e armazenagem da produção. No caso mato-grossense, a armazenagem foi fundamental na competitividade da cultura da soja, pois permitiu a manutenção de um baixo teor de umidade nos grãos (BECKER, 2006).

Durante esta década, o BNDS (Banco Nacional de Desenvolvimento) respaldou os investimentos privados em infraestrutura de armazenagem próximos aos grandes centros produtivos. As formas tradicionais de comercialização foram substituídas por novas, tais como a aquisição antecipada de insumos agrícolas em troca de parte da produção futura, estabelecendo uma relação de dependência entre os produtores rurais e as grandes agroexportadoras (BRASIL, 2009).

A partir da década de 1990, com a minimização da participação do Estado e o declínio do SNCR, as corporações industriais e financeiras (tradings) passaram a suprir este papel no que se refere aos financiamentos aos produtores, os quais foram se tornando cada vez mais dependentes de grandes empresas como a Bunge & Company Limited (BUNGE); a Cargil Incorporated(CARGILL); a Archer Daniels Midland Company (ADM); a Louis Dreyfus Commodities (LDC) e Grupo Andre Maggi (AMAGGI) cobrando juros muito superiores àqueles cobrados pelo Banco do Brasil. Não obstante, a enorme burocracia nas transações com os bancos favoreceu o crescimento da participação das corporações neste processo. Até mesmo algumas multinacionais de insumos, como a Badische Anilin- & Soda-Fabrik. (BASF) e Friedrich Bayer et Compagnie (BAYER) se destacaram como credoras de produtores rurais (BRANDÃO FILHO, 2006).

Na década de 2000, o governo, por meio de políticas públicas, busca alavancar a produção das matérias primas do etanol e biodiesel, assim como a incorporação destes combustíveis na dinâmica energética nacional. A expansão da tecnologia de motores que funcionam tanto a gasolina quanto a álcool a partir de 2003, associado à perspectiva de ampliação do mercado internacional de biocombustíveis, estimularam o aumento na produção nacional de etanol. Diversas usinas de processamento de cana foram construídas e houve o avanço da cana sobre áreas de cerrado, conforme diagnóstico realizado pelo Instituto Sociedade, População e Natureza (ISPN, 2007).

Sendo o estado que mais cresce no país, com crescimento em torno de 10% ao ano, Mato Grosso passou a ser exportador de energia - o principal gargalo do seu desenvolvimento nas últimas três décadas – assumiu a liderança na produção de soja

e algodão, passou a ter o maior rebanho bovino comercial do país e inicia um novo ciclo de desenvolvimento ao agregar valor à produção que transforma proteína vegetal em animal, ou seja, ao invés de exportar a matéria-prima, o grão de soja, transforma-o em ração para aves e suínos e exporta a carne. O resultado desta mudança é o fortalecimento econômico do Estado e a expansão do setor industrial, com a vinda de agroindústrias dos mais diferentes setores, como alimentação (esmagadoras de soja, processadoras de frangos e suínos, frigoríficos), bebidas, metalurgia, combustíveis, calçados, atacado, comunicação e indústria têxtil.

O Estado de Mato Grosso apresentou grande fluxo migratório nas últimas décadas, como consequência do crescimento econômico, sendo mais intenso em 1970, quando a população cresceu a uma média de 6,59% ao ano, reduzindo progressivamente as taxas durante as décadas de 1980 (5,4% ao ano) e 1990 (2,37% ao ano) (CUNHA, 2006).

No período abrangido por este trabalho (1996 a 2006), a população do estado cresceu a uma média de 2% ao ano, acima da média nacional. Este comportamento sugere que o estado ainda funciona como um importante polo nacional de atração populacional, apoiado majoritariamente no agronegócio.

1.2 Indicadores econômicos e de distribuição de renda em Mato Grosso

Para a compreensão das modificações no perfil socioeconômico do estado, utilizaram-se indicadores compostos fundamentalmente por dados secundários. São eles o Produto Interno Bruto – PIB que representa a soma de todos os bens e serviços finais produzidos numa determinada área, durante um determinado período, o PIB do

valor adicionado pela Agropecuária e o Coeficiente de GINI - parâmetro internacional usado para medir a desigualdade de distribuição de renda domiciliar per capita, variando entre 0 e 1, sendo que quanto mais próximo do zero menor é a desigualdade de renda ou seja, menor a concentração de renda.

O crescimento da economia do Estado de Mato Grosso pode ser verificado pelo aumento do PIB, demonstrado pelo Sistema de Contas Regionais do IBGE na série da Tabela 01.

Tabela 01 - Média do PIB* comparativo Brasil, Região Centro-Oeste e Mato Grosso, anos 39 a 2008.

Período	Média	de crescimento (R\$ de 2	(000)
	Brasil	Centro-Oeste	Mato Grosso
Anos 39- 50	R\$ 6.467.083,16	R\$ 1.179.371,03	R\$ 511.123,81
Década 60	R\$ 106.856.957,70	R\$ 2.555.209,84	R\$ 1.067.211,70
Década 70	R\$ 187.516.707,80	R\$ 6.395.941,61	R\$ 2.042.759,01
Década 80	R\$ 622.519.920,30	R\$ 30.458.469,96	R\$ 3.336.659,91
Década 90	R\$ 927.647.726,30	R\$ 46.434.030,84	R\$ 7.482.813,44
Década 00	R\$ 1.007.078.499,00	R\$ 62.816.673,09	R\$ 10.735.468,59
Anos 2001-08	R\$ 1.337.603.037,00	R\$ 117.132.984,43	R\$ 21.487.204,69
Variação %	1987,82	9831,82	4103,91

Fontes: IBGE- Para 2002-2006: Sistema de Contas Regionais Referência 2002. Para 1985-2001: Antigo Sistema de Contas Regionais.

Nota: * O PIB a preços constantes - facilita a comparação entre períodos uma vez que desconta os efeitos da inflação.

Em todos os períodos avaliados o PIB do estado apresentou médias de crescimento superiores às nacionais, com exceção da crise da década de 80, que levou o governo a diminuir ou eliminar boa parte de programas de incentivo. Mesmo assim, apresentou um incremento de 63% nesta década. Esse crescimento baseia-se principalmente na expansão agropecuária.

Tomando-se como base os anos em que foram aplicados os censos agropecuários, verifica-se que o incremento do PIB (a preços constantes) entre 1996 e 2006 do estado de Mato Grosso foi de 103,83%, enquanto que o do Brasil foi de 39,74%, conforme observado na Tabela 02.

Tabela 02 - PIB* comparativo entre Brasil, região Centro-Oeste e Mato Grosso, anos de 1996 e 2006.

Área Territorial	1996	2006	Incremento
Brasil	1.006.603.239,40	1.406.665.463,08	39,74%
Centro Oeste	61.250.710,41	122.462.655,03	99,94%
Mato Grosso	10.268.808,38	20.931.003,41	103,83%

Fonte: Instituto Brasileiro de Geografia e Estatística, 2010.

Nota:*PIB (a preços constantes)

Na tabela 03 percebe-se que o PIB do estado é altamente impulsionado pelo valor adicionado pela atividade agropecuária (189,90%), enquanto essa atividade apresentou queda no PIB nacional.

Tabela 03- Incremento do valor adicionado pela atividade agropecuária ao PIB*, Brasil, Região Centro-Oeste e Mato Grosso, comparativo entre os anos de 1996 e 2006 (unidade R\$ 2.000,00).

Área Territorial	1996	2006	Incremento
Brasil	76.786.406,69	66.232.170,85	-13,74%
Centro Oeste	7.378.806,29	9.598.985,98	30,09%
Mato Grosso	1.602.468,34	4.645.594,90	189,90%

Fonte: Instituto Brasileiro de Geografia e Estatística, 2010.

Nota:*PIB(a preços básicos)

Na tabela 04 observa-se o incremento entre os dois Censos Agropecuários, da participação do Estado de Mato Grosso no valor adicionado bruto do PIB nacional, segundo atividade econômica:

Tabela 04 - Incremento na Participação da Região Centro-oeste e do Estado de Mato Grosso no valor adicionado bruto do PIB nacional, segundo atividade econômica, anos 1996-2006.

Atividade Econômica	Área Territorial	1996	2006	Incremento
Agropecuária	Mato Grosso	3,1	7,0	9,39%
	Centro-Oeste	11,2	14,5	-7,92%
Indústria	Mato Grosso	0,7	1,0	22,19%
	Centro-Oeste	3,9	4,8	10,31%
Indústria Extrativa	Mato Grosso	0,6	0,1	-66,42%
	Centro-Oeste	3,8	1,0	-68,96%

Indústria de Transformação	Mato Grosso	0,6	0,8	17,11%
	Centro-Oeste	2,9	3,8	15,72%
Produção e distribuição de	Mato Grosso	0,7	1,4	83,43%
eletricidade e gás, água, esgoto e	Centro-Oeste	4,6	6,7	48,79%
limpeza urbana				
Construção civil	Mato Grosso	1,1	1,7	39,22%
	Centro-Oeste	6,8	9,1	16,59%
Comércio	Mato Grosso	1,0	1,7	30,37%
	Centro-Oeste	5,7	7,8	16,19%
Intermediação financeira, seguros e	Mato Grosso	0,5	0,9	20,97%
previdência complementar	Centro-Oeste	14,4	8,9	-13,43%
Administração, saúde e educação	Mato Grosso	1,4	1,5	9,71%
públicas e seguridade social	Centro-Oeste	20,6	19,3	-3,51%

Fonte: IBGE –Diretoria de Contas Nacionais, 2007 – dados organizados pela autora.

Entre os anos de 1996 e 2006, a economia mato-grossense perdeu participação na indústria extrativa (-66,42 %) e ganhou na agropecuária (9,39 %), na indústria (22,19%), na indústria de transformação (17,11%), na produção e distribuição de eletricidade e gás, água, esgoto e limpeza urbana (83,43%), na construção civil (39,22%), no comércio (30,37%), na intermediação financeira, seguros e previdência complementar (20,97%) e na administração, saúde e educação públicas e seguridade social (9,71%). Com exceção da indústria extrativa o estado apresentou incremento em todas as atividades econômicas com percentuais maiores que os da região Centro-Oeste.

Apesar do crescimento no estado ter sido impulsionado pela agropecuária, não ficou restrito a ela, sendo também influenciado por incentivos fiscais e transferência das indústrias para mais próximo da matéria-prima ou do consumidor final (especialmente a indústria de beneficiamento de grãos, carnes e insumos). De maneira geral, este processo foi impulsionado por investimentos regionais ou mesmo pela guerra fiscal, ou ainda pela procura de mão-de-obra mais barata entre as unidades da federação. Mesmo assim, ainda não é possível afirmar que há uma migração industrial maciça para o estado (OLIVEIRA, 1996).

De acordo com o IBGE, no ano de 2007 o Mato Grosso teve o maior crescimento (11,3%) de todos os estados na participação do PIB nacional, assumindo a 15^a posição no ranking nacional. Isto ocorreu pela recuperação da atividade econômica, já que em 2006 o estado teve queda em torno de 4% de seu PIB, resultado mais baixo de sua história e o menor entre os 27 estados (IBGE, 2009).

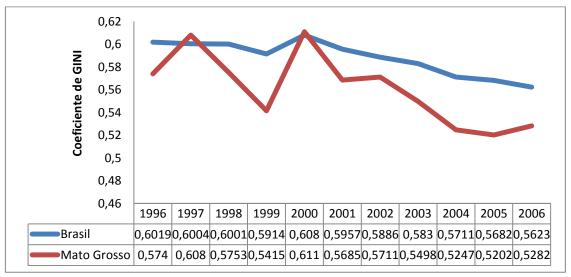
O PIB per capita, obtido dividindo-se a renda do ano pela população residente no mesmo período, constitui-se em importante referência como medida de crescimento econômico. Entretanto o enfoque estrito nas taxas de crescimento da renda per capita não capta a quem este crescimento beneficia. O baixo desenvolvimento humano pode impedir que o crescimento econômico se sustente, inversamente, a adoção de políticas que melhoram a saúde e educação da população, amplia o acesso às oportunidades econômicas (WORLD BANK, 2001).

Tabela 05 - Percentual de incremento no PIB per capita (unidade R\$2.000,00), no Brasil, região Centro-Oeste e Mato Grosso, entre os anos de 1996 e 2006.

Área Territorial	1996	2006	Incremento
Brasil	6,24	7,53	17,11%
Centro-Oeste	5,66	9,23	42,00%
Mato Grosso	4,41	7,33	38,30%

Fonte: IBGE –Diretoria de Contas Nacionais, 2007 – dados organizados pela autora.

No período, observou-se que o PIB per capita do Estado apresentou incremento de 38,30%, em comparação com o do Brasil que foi de 17,11%.


Segundo o IBGE, Mato Grosso foi o único estado a ultrapassar a média nacional nos anos posteriores a 1995. Em 2002, equivalia a 90% do PIB brasileiro, em 2004, foi 30% maior do que a média brasileira e em 2007 ficou 3% acima dela (IBGE, 2009).

Porém, a sustentabilidade do crescimento econômico não se restringe à capacidade de manter seu crescimento no longo prazo, mas também em atingir a melhora no bem-estar da população sob um aspecto multidimensional. Neste sentido, uma das dimensões mais importantes é a redução da pobreza (GUIDOLIN, 2006).

Pobreza e desigualdade são problemas crônicos que, apesar de apresentarem sinais de melhora nos últimos anos, ainda fazem o Brasil ocupar os primeiros lugares em *rankings* internacionais de qualidade de vida, tais como o do Relatório sobre Desenvolvimento Humano (ONU, 2005). Deste modo, tornou-se relevante entender se as bases do crescimento econômico no estado de Mato Grosso produzem efeitos positivos ou negativos sobre a pobreza e a desigualdade.

O indicador mais usado no mundo, que mede a desigualdade de renda domiciliar per capita é o coeficiente de GINI. A distribuição de renda usada foi a que mais se aproxima da distribuição de bem-estar: a distribuição da renda domiciliar per capita, após impostos e transferências (ONU, 2005).

No Brasil, a Pesquisa Nacional por Amostra de Domicílios (PNAD) é a única fonte sobre a distribuição de renda, tal como definida acima, que é comparável ao longo do tempo, de abrangência nacional e anual. Os Censos demográficos também são comparáveis entre si, mas ocorrem apenas a cada dez anos. Dessa forma, na Figura 02 observou-se a evolução comparativa entre o Brasil e o Estado de Mato Grosso deste coeficiente, no período entre os censos agropecuários de acordo com a PNAD.

Fonte: Microdados da PNAD/ IBGE, 2010.

Figura 02 - Evolução do Coeficiente de GINI comparativa entre Brasil e Mato Grosso no período de 1996 a 2006.

Entre 1996 e 2006, houve reduções sucessivas no índice de GINI, sendo que no Brasil passou de 0,6010 em 1996 para 0,5623 em 2006 (redução de 3,87%) e no estado de Mato Grosso passou de 0,574 em 1996 para 0,5282 em 2006 (redução de 4,58%).

Apesar dessa redução, mais de 50% da renda ainda está sendo apropriada pelos 10% mais ricos da população. E, de acordo com DEDECCA & ROSANDISKI (2007) a melhoria do bem-estar deve estar associada a mudanças na distribuição de renda com modificação positiva dos níveis de rendimentos de todos os estratos da população, cabendo aos níveis inferiores uma trajetória de elevação mais acelerada.

Para SOARES (2007), o crescimento econômico é um fator necessário, embora não suficiente, para que haja uma redução da desigualdade. A geração de novos empregos contribui para a diminuição da pobreza e tende a aumentar a participação das classes mais baixas na apropriação da renda total. Os rendimentos do trabalho são os que mais parecem contribuir para a redução da desigualdade. Outro aspecto a ser considerado e que provavelmente contribuiu de maneira positiva para a redução recente da desigualdade foi o aumento real no valor do salário mínimo verificado na última década. Como parte expressiva das remunerações do trabalho está diretamente vinculada a esse salário, essa valorização representou uma melhora no rendimento de parcela significativa da população, incluindo aqueles beneficiários do sistema de Assistência e Previdência Social que têm seus benefícios constitucionalmente vinculados ao valor do salário mínimo oficial.

No estrato de forças motrizes, analisando os macro determinantes relacionados às condições socioeconômicas, os indicadores distais apresentados demonstraram crescimento econômico do estado aliado a melhoria da distribuição de renda da população no período estudado.

Porém, a melhoria da distribuição de renda não está relacionada diretamente com a melhoria do bem estar e das condições de saúde da população. O dinamismo do crescimento econômico produz cargas de doenças através da utilização crescente

de insumos químicos e outras formas de degradação ambiental que afetam a população em geral, em graus diferenciados da distância da fonte.

No caso do Estado de Mato Grosso a atividade econômica preponderante – o agronegócio – está relacionada a um determinado modelo de produção agrícola voltado para a exportação de grãos e com os insumos utilizados para o aumento da produtividade, destacando-se os agrotóxicos como uma das substâncias mais prejudiciais à saúde humana.

As características deste modelo e a produtividade agrícola no estado, relacionadas com o uso deste insumo, serão apresentadas nos capítulos seguintes.

CAPÍTULO II

AGRICULTURA MODERNA

"Existe, certamente, um plano primordial de reprodução nos processos sociais. Trata-se da reprodução das relações de produção (isto é, do regime de propriedade existente, da forma de distribuição dos meios produtivos). Todavia, distribuição pressupõe produção, consumo e intercâmbio, de modo que a reprodução do sistema de distribuição ou regime de propriedade implica a reprodução própria da sociedade" (SAMAJA, 2000 p. 72).

2. AGRICULTURA MODERNA

A agricultura moderna refere-se à reorganização da produção agrícola com o uso de tecnologias como eixo principal para sua aplicação enquanto modelo justificada pela necessidade de incremento da produção de alimentos, haja vista o crescimento populacional.

No entanto, de acordo com GRAZIANO NETO (1982), a modernização na agricultura significa que ao mesmo tempo em que ocorre o progresso técnico, modifica-se também a organização da produção. Os pequenos produtores vão sendo expropriados, dando lugar à organização da produção em moldes empresariais. Com esse processo de transformação, os chamados agricultores de subsistência — cuja principal finalidade da produção é o consumo próprio da família trabalhadora, levando ao mercado apenas o excedente da produção — dão lugar ao surgimento das empresas rurais, capitalistas, onde as exigências do mercado e a racionalidade do lucro são as condicionantes fundamentais do processo de produção, apesar do discurso da escassez de alimentos.

Atualmente, o latifúndio está relacionado com a internacionalização da economia, pois o grande proprietário de terra hoje se tornou capitalista proprietário de terra por estar vinculado ao agronegócio. Situação esta que envolve disputas territoriais e conflitos no campo tendo como protagonistas principais duas classes antagônicas: o capitalista do agronegócio latifundiário e exportador de um lado e o campesinato de outro (OLIVEIRA, 2003).

A agricultura moderna teve sua origem nos séculos XVIII e XIX, em diversas áreas da Europa, na chamada Primeira Revolução Agrícola Contemporânea. Neste período ocorreram intensas mudanças, tanto econômicas, quanto sociais e tecnológicas. Estas mudanças desempenharam um papel central no processo de decomposição do feudalismo e no surgimento do capitalismo (VEIGA, 1991).

Do ponto de vista tecnológico, a Primeira Revolução Agrícola caracterizou-se pelo abandono paulatino do pousio e pela introdução de sistemas rotacionais com leguminosas e/ou tubérculos. Estas plantas podiam ser utilizadas tanto na adubação do solo, quanto na alimentação humana e animal (OLIVEIRA JR., 1989). Com isso, foi possível intensificar o uso da terra e obter aumentos significativos na produção agrícola, "eliminando" a escassez crônica de alimentos que caracterizaram os períodos anteriores (EHLERS, 1996).

Segundo OLIVEIRA JR.(1989) a partir da Primeira Guerra Mundial a agricultura passa a depender cada vez menos dos recursos locais, e cada vez mais de tratores, colheitadeiras, arados e agrotóxicos produzidos pela indústria. A indústria passa a transformar produtos provenientes da agricultura, industrializando, acondicionando e distribuindo uma parte crescente da produção agrícola. Ao mesmo tempo ocorre o surgimento de um mercado internacional com os avanços nos processos de transporte, armazenamento e conservação de produtos agrícolas.

Para FURTADO (2000) o conteúdo ideológico da modernidade na agricultura incorpora as noções de crescimento (ou de fim da estagnação e do atraso), ou seja, a ideia de desenvolvimento econômico e político; de abertura (ou do fim da autonomia) técnica, econômica e cultural, com o consequente aumento da heteronomia; de especialização (ou do fim da polivalência), associada ao triplo movimento de especialização da produção, da dependência da produção agrícola e a inter-relação com a sociedade global; e o aparecimento de um novo tipo de agricultor, individualista e competitivo.

Estas transformações, aliadas às conquistas da pesquisa nas áreas química, mecânica e genética, bem como o fortalecimento do setor industrial voltado para a agricultura, culminaram, no final da década de 60, início da década de 70, em um novo processo de transformação profunda da agricultura mundial, conhecido como Revolução Verde (VEIGA, 1991).

O termo Revolução Verde é usado para identificar o modelo de modernização da agricultura mundial, baseado no princípio da intensificação através da especialização (CROUCH, 1995).

O modelo tem como eixos principais: a monocultura e a produção estável de alimentos e envolve tecnologias como motomecanização, uso de variedades vegetais geneticamente melhoradas, fertilizantes de alta solubilidade, pesticidas, herbicidas e irrigação. A estratégia central seria a de lutar contra a deficiência de alimentos, via aplicação massiva de inovações tecnológicas no campo e o objetivo de maximizar a produtividade agrícola (CONWAY et al., 1990).

Normalmente, quando se fala em modernização da agricultura, pensa-se nas modificações ocorridas na base técnica de produção, na substituição das técnicas agrícolas tradicionalmente utilizadas, por técnicas "modernas". E, quando se pretende avaliar o processo de modernização utiliza-se indicadores denominados convencionais, ou seja, através do número de tratores existentes em determinada atividade e da produção de bens agrícolas (PEREIRA, 2007).

No Brasil, a chamada modernização da agricultura não é outra coisa que o processo de transformação capitalista da agricultura, que ocorre vinculado às transformações gerais da economia brasileira recente. Tem caráter conservador, pois tem mantido a concentração de terras sempre presente na estrutura fundiária.

Além da prioridade dada a determinadas culturas, o crédito também foi diferenciado e favoreceu os grandes produtores, com diferenciação nas regiões (GRAZIANO NETO, 1982).

A contextualização do Mato Grosso em seus diferentes ciclos econômicos e políticas públicas elaboradas e implementadas com vistas a incorporar esta área à dinâmica capitalista apresentou-se de importância ímpar, na medida em que, a partir da década de 70, o acelerado crescimento econômico do estado se deu principalmente pela produção agrícola, utilizando-se do modelo da agricultura

moderna, gerando transformações e incrementos nas atividades econômicas a ela relacionadas.

Nas etapas históricas de desenvolvimento da agricultura, o agronegócio ocupa, atualmente, a forma quase hegemônica de organização da produção de alimentos mundiais. Guardadas as respectivas fases do crescimento econômico, no Estado de Mato Grosso - considerado um dos maiores celeiros do Brasil - esta questão não é diferente, o que se reflete nos indicadores de concentração fundiária e da produção agrícola e uso dos agrotóxicos.

2.1 Indicadores da concentração fundiária e produção agrícola em Mato Grosso

O Mato Grosso apresenta grande concentração fundiária, reflexo de seu histórico de ocupação. Para analisar a estrutura fundiária no estado, adotaram-se, neste estudo, três grandes grupos de imóveis: pequenos, com área inferior a 100 ha; médios, com área entre 100 e menos de 1000 ha, e grandes, com área superior a 1000 ha. Esses três grupos são utilizados por diversos autores e de modo geral há consenso de que os imóveis pequenos correspondem ao campesinato e os médios e grandes correspondem à agricultura capitalista, como pode ser visto em OLIVEIRA (2003).

Para a análise utilizaram-se principalmente os dados da área, pois, se considerar o número de imóveis, os menores serão sempre mais numerosos. Entendese assim, que é a proporção da área total que cada classe detém que determina a maior ou menor importância da agricultura camponesa ou da agricultura capitalista.

Tabela 06 - Evolução da estrutura fundiária de Mato Grosso entre 1996 e 2006.

Grupos de área	1996		2006		1996-2006
	Imóveis	Área (ha)	Imóveis	Área (ha)	Evolução área
Menos de 100 há	46.877	1.634.841	76.761	2.640.860	(+) 61,53%
De 100 até 1000 há	23.861	7.237.076	26.577	8.109.978	(+) 12,06%
Mais de 1000 há	8.010	40.967.713	8.624	37.054.676	(-) 9,55
Total	78.748	49.839.630	111962	47.805.514	(-) 4,08

Fonte: IBGE - Censos Agropecuários 1996 e 2006. - Elaborado pela autora

Em 1996 os imóveis rurais no Mato Grosso eram 78.748 e compreendiam uma área total de 49.839.630 ha, ou seja, 55,17 % da área territorial total do estado. Desses, 59,53% eram de pequenas propriedades e ocupavam 3,28% da área enquanto 10,17% das grandes propriedades ocupavam 82,20% das áreas de estabelecimentos.

Essa realidade se manteve em 2006, pois apenas 7,70% das propriedades eram classificadas como grandes (acima de 1.000 hectares), contudo, compreendiam 77,51% da área de estabelecimentos agropecuários. Em contrapartida, as pequenas propriedades, que respondiam por 68,56% dos estabelecimentos, abrangiam apenas 5,52% da área total rural.

Apesar de não ter havido diminuição significativa do grau de concentração da terra em Mato Grosso entre 1996 e 2006, neste intervalo de onze anos analisado o número de imóveis rurais apresentou incremento de 42% enquanto a área total foi reduzida em 4% sendo a criação de novos municípios uma das explicações. Também se observou aumento na área das pequenas e médias propriedades de 61,54% e 12,06% respectivamente, fato que provavelmente pode ser explicado pela instalação de projetos de assentamentos do Instituto Nacional de Colonização e Reforma Agrária (INCRA) e do Instituto de Terras de Mato Grosso (INTERMAT) em vários municípios do estado nesse período (INTERMAT, 2005).

Até 2005, 23 municípios do estado foram contemplados com os Projetos de Assentamentos rurais, beneficiando 4.796 famílias. Além dos projetos de redistribuição fundiária, em 2006 foi disponibilizado para mais de mil famílias o

crédito de instalação - modalidade materiais de construção - previsto no programa federal de reforma agrária (MT-INTERMAT, 2005).

Por não ser um agrupamento absoluto, na análise dos dados segundo esses grupos, é necessário considerar a grande diversidade de sistemas técnicos da agropecuária. As modificações que ocorreram no setor em Mato Grosso foram caracterizadas através da análise dos índices de utilização das técnicas, consideradas modernas, que dão fachada a modernização.

Um dos indicadores mais usados é o uso de tratores, talvez o melhor indicador do padrão técnico da agricultura, porque viabiliza a utilização de diversos implementos (arados, grades e pulverizadores), demonstrando a mecanização (GRAZIANO NETO, 1982). Na tabela 07, analisou-se o incremento entre o número de tratores por potência em estabelecimentos no período entre 1996 e 2006 no estado.

Tabela 07 - Evolução do número de tratores por potência(CV). Mato Grosso, anos 1996-2006.

Ano	Tratores com Menos de 100CV	Tratores de 100CV e mais
1996	19.781	13.932
2006	19.157	23.172
Incremento	-3,15%	66,32%

Fonte: IBGE – Censos Agropecuários 1996 e 2006.

Verificou-se, entre 1996 e 2006, que o número de tratores com menos de 100CV de potência reduziu-se no estado em 3,15%, enquanto os tratores com potência de 100CV e mais apresentaram incremento de 66,32%.

Esses dados evidenciam que o processo de modernização da agropecuária de Mato Grosso no período foi mais acentuado nas propriedades de maior extensão fundiária, as quais operam, de modo geral, com tratores de maior potência.

De outro modo, além do indicador acima abordado, a modernização da agricultura de Mato Grosso também pode ser analisada por intermédio da quantidade

produzida dos bens de origem agrícola de maior relevância para a economia do estado (PEREIRA, 2007). Esses dados são apresentados na Tabela 08.

Tabela 08 - Produção dos principais bens agrícolas de Mato grosso (em Toneladas), 1996-2006.

Ano	Soja	Algodão	Arroz	Milho	Cana-de-açúcar
1996	5.032.921	73.553	721.793	1.514.658	8.462.490
2006	15.594.221	1.437.926	720.834	4.228.423	13.552.228
Incremento	209,84%	1854,95%	-0,13%	179,17%	60,14%

Fonte: Companhia Nacional de Abastecimento (CONAB), Séries históricas relativas às safras 1996/1997 e 2009/2010 de área plantada, produtividade e produção, 2011.

Observou-se que a produção de algodão experimentou o maior incremento (1854,95%), exercendo nítida supremacia na agricultura do estado durante o período analisado. Também se constatou significativo aumento na produção de soja (209,84%), milho (179,17%) e cana-de-açúcar (60,14%). A diminuição de 0,13% na produção de arroz demonstrou a mudança do processo agrícola, tendo em vista que historicamente essa é sempre a primeira cultura depois que o cerrado é derrubado, seguido do plantio de soja ou para a formação de pastagens (OLIVEIRA, 2005).

As pressões geradas pela atividade econômica desenvolvida no estado, observadas através desses indicadores de modernização da agricultura, e os processos de exposição aos diversos insumos químicos, refletiram na população matogrossense gerando efeitos deletérios ao ambiente e a saúde.

A utilização de agrotóxicos e fertilizantes em larga escala para a produção agrícola no estado tem sido apontada em vários estudos locais (PIGNATI, 2007; PALMA et al, 2010; SANTOS et al, 2011.) como um dos contaminantes mais importantes do solo, água, ar e, presumivelmente, um dos produtos responsáveis pelo aumento do número dos casos de câncer.

As características deste contaminante e seus efeitos relacionados ao câncer, amparados na literatura mundial serão apresentados no capitulo seguinte.

CAPÍTULO III

AGROTÓXICOS

"Posto que toda anomalia é um "encontro" entre o que acontece na ordem real, um sistema de classificação cultural, e uma vontade de resolução, compreende-se que de maneira "espontânea" os membros da família tendam a interpretá-las segundo esquemas carregados de conteúdo ético.[.].;os membros da sociedade civil, tendam a interpretar por critérios e instrumentos próprios à observação metódica, a medição e o cálculo; e, por último, os membros da sociedade política tendam a interpretar em termos de beneficência pública e de controle ideológico [...] – através da Saúde Pública" (SAMAJA, 2000 p. 89).

3. AGROTÓXICOS

A utilização dos agrotóxicos - enquanto substância química desenvolvida no pós-guerra para combate as "pragas" agrícolas e aumento da produtividade - provoca, ao mesmo tempo, consequências negativas para o ambiente e para a saúde humana.

No Brasil, os agrotóxicos aparecem na década de 1960-1970 como a solução científica para o controle das pragas que atingiam lavouras e rebanhos. Tal visão, reforçada pela forte e crescente atuação da indústria química no país, passou a legitimar o uso de agrotóxicos no meio rural e, ao mesmo tempo em que este saber se fazia dominante e dominador, não eram oferecidas alternativas à grande massa de trabalhadores que, ano a ano, se expunha cada vez mais aos efeitos nocivos destas substâncias (PERES et al., 2003).

O Decreto Federal nº 4.074, de 4 de janeiro de 2002, que regulamenta a Lei Federal nº 7.802, de 11 de julho de 1989, em seu Artigo 1º, Inciso IV, define o termo agrotóxico como: produtos e agentes de processos físicos, químicos ou biológicos, destinados ao uso nos setores de produção, no armazenamento e beneficiamento de produtos agrícolas, nas pastagens, na proteção de florestas, nativas ou plantadas, e de outros ecossistemas e de ambientes urbanos, hídricos e industriais. A finalidade dos agrotóxicos, bem como das substâncias e produtos empregados como desfolhantes, dessecantes, estimuladores e inibidores de crescimento é de alterar a composição da flora ou da fauna para preservá-las da ação danosa de seres vivos considerados nocivos (BRASIL, 2002).

Na conceituação da Agência Nacional de Vigilância Sanitária (ANVISA, 2002), os agrotóxicos são agentes constituídos por uma grande variedade de compostos químicos (principalmente) ou biológicos, desenvolvidos para matar, exterminar, combater, repelir a vida, além de controlarem processos específicos,

como os reguladores do crescimento. Normalmente, têm ação sobre a constituição física e a saúde do ser humano, além de se apresentarem como importantes contaminantes ambientais e das populações de animais relacionadas a estes ambientes.

De acordo com PERES et al. (2005), a saúde humana pode ser afetada pelos agrotóxicos diretamente, através do contato com estas substâncias – ou através do contato com produtos e/ou ambientes por estes contaminados – e, indiretamente, através da contaminação da biota de áreas próximas a plantações agrícolas, que acaba por desequilibrar os ecossistemas locais, trazendo uma série de prejuízos aos habitantes dessas regiões. As formas de exposição responsáveis pelos efeitos destes agentes sobre o homem são razoavelmente conhecidas. Precisam ser melhor estudados os processos através dos quais as populações humanas estão expostas, dada a multiplicidade de fatores que estão envolvidos.

No caso específico da saúde humana, os danos podem atingir as populações expostas em diferentes níveis: os aplicadores, os membros da comunidade, onde os mesmos estão sendo utilizados e /ou armazenados, os consumidores de alimentos contaminados com resíduos, os indivíduos que utilizam água contaminada. Essas contaminações são provenientes de deriva (parte do produto aplicado que não atinge o alvo desejado e pode se dispersar no ambiente) durante a aplicação, resíduos em alimentos e na água, mau uso e destino incorreto das embalagens, uso doméstico em ambientes fechados e práticas agrícolas incorretas, como a não observância no intervalo de carência (GRISÓLIA, 2005). Dessa forma, toda a população está exposta, direta ou indiretamente. Estima-se que seres humanos chegam a consumir 1,5 gramas de pesticidas naturais por dia, na forma de fenóis provenientes de plantas e flavonoides de alimentos, entre outras substâncias tóxicas (AMES et al, 1990; AMES & GOLD, 1990; GOLDMAN & SHIELDS, 2003; THILLY et al, 2003). A OMS divulga que, anualmente, entre 3 e 5 milhões de pessoas no mundo sejam intoxicadas por agrotóxicos e resíduos destes produtos nos alimentos.

A diversidade de substâncias desenvolvidas pela indústria química e os diferentes graus de toxicidade são classificados de acordo com o grupo químico a que pertencem e o tipo de ação a que se destinam.

3.1 Caracterização dos Agrotóxicos

Em muitos países existem programas específicos que atuam no controle da exposição a substâncias cancerígenas, (como a EPA – Environmental Protection Agency, nos Estados Unidos) gerando múltiplos sistemas de classificação. No entanto, a International Agency for Research on Cancer (IARC) é considerada referência internacional no meio científico e apresenta critérios definidos em seu programa de monografias que consiste em revisões sistemáticas acerca de estudos de substâncias consideradas cancerígenas, dentre elas os agrotóxicos (WÜNSCH FILHO & KOIFMAN, 2003).

Nesse estudo utilizou-se a classificação dos agrotóxicos segundo o grupo químico ao qual pertencem e o tipo de ação (natureza da praga controlada) por ser mais utilizada, de acordo com a Fundação Nacional de Saúde (Figura 02), associada aos estudos da IARC e da Agência de Proteção Ambiental dos Estados Unidos (Environmental Protection Agency – EPA) quanto ao potencial carcinogênico (FUNASA, 1998).

A avaliação do potencial carcinogênico dos agrotóxicos é muito complexa e envolve aspectos como a heterogeneidade dos compostos utilizados, as mudanças frequentes de produtos específicos, a variabilidade nos métodos de aplicação, a ausência de dados adequados sobre a natureza da exposição, o longo período necessário para a indução do câncer e as dificuldades na obtenção de dados sobre exposição (NUNES & TAJARA, 1998; MILIGI et al., 2006).

As classes de agrotóxicos estão relacionadas com o tipo de ação na população específica de parasitas, tanto animais como vegetais. As mais importantes são as classes de inseticidas (controle de insetos, larvas e formigas), fungicidas (combate aos fungos) e herbicidas (combate às ervas daninhas).

Outras classes compreendem: raticidas (combate aos roedores), acaricidas (combate aos ácaros), nematicidas (combate aos nematoides) e molusquicidas (combate aos moluscos, basicamente contra o caramujo da esquistossomose) (FUNASA,1998). Vale ressaltar que muitos agrotóxicos possuem mais de um tipo de ação. Por exemplo: o inseticida organofosforado "Parathion" é também utilizado como acaricida; o inseticida carbamato "Furadan" também possui ação de combate aos nematoides (nematicida).

Figura 03 – Classificação das principais classes de agrotóxicos quanto à sua ação e ao grupo químico ao qual pertencem:

CLASSE	GRUPOS QUÍMICOS	EXEMPLOS (PRODUTOS/SUBSTÂNCIAS)
INSETICIDAS	Organofosforados	Azodrin, Malathion, Parathion, Nuvacron,
		Tamaron, Hostation, Lorsban
	Carbamatos	Carbaryl, Furadan, Lannate, Marshal
	Organoclorados ¹	Aldrin, Endrin, DDT, BHC, Lindane, Endosulfan
	Piretroides (sintéticos)	Decis, Piredam, Karate, Cipermetrina
FUNGICIDAS	Ditiocarbamatos	Maneb, Mancozeb, Dithane, Thiram, Manzat
	Organoestânicos	Brestan, Hokko Suzu
	Dicarboximidas	Orthocide, Captan
HERBICIDAS	Bipiridílios	Gramoxone, Paraquat, Reglone, Diquat
	Glicina substituída	Roundup, Glifosato, Direct
	Derivados do ácido	Tordon, 2,4-D, 2,4,5-T
	fenoxiacético	
	Dinitrofenóis	Bromofenoxim, Dinoseb, DNOC
	Triazina	Stopper, Sinerge, Ametron

Fonte: Funasa, 1998; Peres, 1999; Anvisa, 2005.

Nota: 1 Seu uso tem sido progressivamente restringido ou mesmo proibido em vários países, inclusive no Brasil.

Os Inseticidas Organoclorados são agrotóxicos de lenta degradação, com capacidade de acumulação nos seres vivos e no meio ambiente, podendo persistir por até 30 anos no solo. São altamente lipossolúveis e o homem pode ser contaminado

não só por contato direto, mas também através da cadeia alimentar pela ingestão de água e alimentos contaminados (VERDES et al., 1990; REIGART; ROBERTS, 1999).

Esses inseticidas foram utilizados por várias décadas na saúde pública para o controle de vetores de doenças endêmicas, como a malária (MATOS et al., 2002), assim como na agricultura. O DDT (inseticida organoclorado) foi banido em vários países a partir da década de 1970.

No Brasil, a maioria dos organoclorados de uso na agricultura teve a comercialização, uso e distribuição proibidos pela Portaria nº 329, de 2 de setembro de 1985. As restrições à sua utilização originam-se da sua grande capacidade residual e de uma possível ação carcinogênica (NUNES & TAJARA, 1998). Entretanto, algumas substâncias, como o endossulfam e o dicofol, foram liberadas em caráter emergencial para comercialização, distribuição e uso em algumas culturas (Portaria nº 95, de 21 de novembro de 1985). A Agência Nacional de Vigilância Sanitária (ANVISA) vem propondo a reavaliação do endossulfan, visando à sua proibição no país, por se mostrar como risco à saúde humana, incluindo potencial carcinogênico (ANVISA, 2009).

A IARC classifica como potencialmente cancerígenos para a espécie humana nesse grupo o DDT, por estar associado ao desenvolvimento de câncer de fígado, de pulmão e linfomas em animais de laboratório e também o Clordane, o Heptacloro, o Hexaclorobenzeno e o Mirex (IARC, 2009).

Os Inseticidas Organofosforados e Carbamatos são agrotóxicos amplamente utilizados na agricultura e podem ser absorvidos por inalação, ingestão ou exposição dérmica (FELDMAN, 1999). Após absorvidos, são distribuídos nos tecidos do organismo pela corrente sanguínea e sofrem biotransformação, principalmente no fígado. A principal via de eliminação é a renal (MATOS et al., 2002).

Sua principal ação no organismo humano é a inibição da acetilcolinesterase, o que leva a um acúmulo de acetilcolina (atua na mediação do impulso nervoso) nas

terminações nervosas. Esse acúmulo pode desencadear uma série de sinais e sintomas que mimetizam ações muscarínicas, nicotínicas e ações do SNC (ECOBICHON, 2001).

Em relação a essa classe, na revisão da IARC (2009) estão presentes o Diclorvós (organofosforado) como possivelmente cancerígeno para o homem; Malation, Paration (organofosforados); Aldicarb, Carbaril, Maneb (carbamatos) como não carcinogênicos para o homem.

Apesar de não incluído na lista da IARC, o agrotóxico Acefato é classificado como possível carcinógeno humano pela Agência de Proteção Ambiental dos Estados Unidos (Environmental Protection Agency – EPA).

A EPA inclui nessa classe as substâncias para as quais há evidências de carcinogenicidade obtidas em estudos experimentais, mas que não foram adequadamente avaliadas em estudos com seres humanos. Não existem, até o momento, estudos epidemiológicos que tenham investigado a associação entre exposição ao Acefato e a ocorrência de câncer em seres humanos (ANVISA, 2009).

Os Inseticidas Piretroides tiveram seu uso crescente nos últimos 20 anos e, além da agropecuária, são também muito utilizados em ambientes domésticos (MATOS et al., 2002; TRAPÉ, 2005), nos quais seu uso abusivo vem causando aumento nos casos de alergia em crianças e adultos (FUNASA, 1998).

São facilmente absorvidos pelas vias digestiva, respiratória e cutânea. Os sintomas de intoxicação aguda ocorrem principalmente quando sua absorção se dá por via respiratória. São compostos estimulantes do sistema nervoso central e podem produzir lesões no sistema nervoso periférico, em doses altas (MATOS et al., 2002; MS/SVS, 1997).

Os Piretroides parecem não estar associados ao desenvolvimento de câncer. A IARC classifica a Deltametrina e a Permetrina no grupo de não carcinogênicos para o homem.

Os Herbicidas são usados no controle de espécies não desejadas no campo e para realização de "capina química". Nas últimas duas décadas, esse grupo tem tido sua utilização crescente na agricultura. Paraquat, Glifosato, Triazinas e Derivados do ácido fenoxiacético são comercializados no Brasil.

Existem várias suspeitas de mutagenicidade, teratogenicidade e carcinogenicidade relacionadas a esses produtos. Alguns grupos químicos merecem atenção especial pelos efeitos adversos à saúde como os Herbicidas Bipiridílios (Paraquat) — este produto é considerado como um dos agentes de maior toxicidade específica para os pulmões. Pode ser absorvido por ingestão, inalação ou contato com a pele. Provoca lesões hepáticas, renais e fibrose pulmonar irreversível, podendo levar à morte por insuficiência respiratória em até duas semanas após a exposição, em casos graves (FUNASA, 1998; MATOS et al., 2002).

A Glicina substituída – comercializada principalmente com os nomes Glifosato ou Roundup, é o herbicida mais utilizado no mundo (COX, 2004). Seu uso se dá na agricultura de grande porte e também na agricultura familiar, sendo considerado por muitos agricultores e agrônomos como um produto quase "inofensivo" ao homem (SILVA, 2007).

Estudos recentes demonstram existir relação entre a exposição ao Glifosato e o desenvolvimento de Linfoma não Hodgkin e Mieloma Múltiplo (COX, 2004; CLAPP, 2007). Além disso, pesquisadores sugerem que o Glifosato formulado provoca as primeiras etapas de cancerização de células, pois ativa o que se chama de checkpoint, ou seja, as proteínas de controle (EcoPortal.net, 2007).

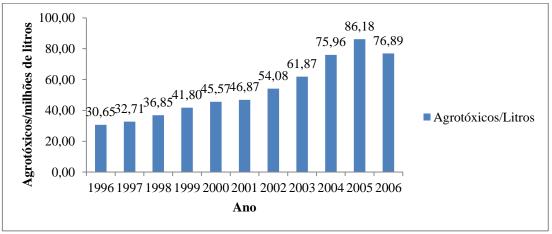
As Triazinas são consideradas contaminantes ambientais importantes por serem muito persistentes, principalmente em ambientes aquáticos. Pesquisas que investigam a associação desses compostos com o desenvolvimento de câncer ainda são controversas, tanto em animais quanto em seres humanos. Alguns artigos de revisão sugerem uma associação com o câncer de ovário (CLAPP, 2007; MILLIGI, 2006). Entretanto, outros estudos e publicações não encontraram associação entre

Atrazinas e câncer. São necessários mais estudos sobre o tema (PAN-UK; EPA, 2009; RUSIECKI et al., 2004).

Os Herbicidas Derivados do Ácido Fenoxiacético - um dos principais produtos é o 2,4 D, muito usado no país em pastagens e plantações de cana-de-açúcar -, apresenta quadro de intoxicação aguda com cefaleia, tontura, fraqueza, náuseas, vômitos, dor abdominal, lesões hepáticas e renais. Casos graves podem apresentar convulsões, coma e podem evoluir para óbito em 24 horas. Os efeitos crônicos incluem neuropatia periférica, disfunção hepática e risco de desenvolver Linfomas tipo Hodgkin e não Hodgkin, Sarcoma de partes moles e Mieloma Múltiplo (MATOS et al., 2002; MILIGI et al., 2006).

Com relação aos chamados "inertes" das formulações dos agrotóxicos, que são os compostos utilizados com o objetivo de aumentar o poder de penetração, a capacidade de dispersão, a emulsibilidade, a solubilidade e a estabilidade dos ingredientes ativos, a US-EPA classifica-os de acordo com o grau de periculosidade toxicológica e muitos deles apresentam potencial carcinogênico maior que os próprios ingredientes ativos. Geralmente, os estudos feitos com os ingredientes ativos puros não consideram as formulações que vão a campo, que se constituem num coquetel de substâncias químicas com atividades diferentes (caracterizando multiexposição ou exposição combinada), podendo modificar o comportamento tóxico de um determinado produto, acarretando efeitos diversos sobre a saúde dos grupos expostos (GRISÓLIA, 2005).

3.2 Indicadores do uso de Agrotóxicos em Mato Grosso


A utilização dos agrotóxicos acompanha o volume e a diversidade da produção agrícola. No estado de Mato Grosso, as culturas temporárias como os

cultivos extensivos de soja, algodão e milho, demandam intenso uso de agrotóxicos (GRISÓLIA, 2005).

Como a maioria da produção agrícola é dependente de alta tecnologia e de agroquímicos, utilizaram-se no estado, no ano de 2005, aproximadamente 75 mil toneladas de agrotóxicos (formulações comerciais), calculado pelo consumo médio de 8,5 kg de agrotóxicos por hectare de lavoura temporária, segundo o INDEA-MT (2006).

O estado de Mato Grosso tornou-se o maior consumidor nacional destes produtos tóxicos (inseticida, herbicida, fungicida e outros) perfazendo 19 % de todo o consumo brasileiro (SINDAG, 2005).

PIGNATTI (2006) levantou junto ao INDEA-MT os dados disponíveis que se referiam aos anos de 2005 e 2006. Para a obtenção do consumo de agrotóxicos dos anos de 1996 a 2004 utilizou-se como unidade de correção o volume de agrotóxico por hectare de cada tipo de lavoura temporária no ano de 2005 e aplicou-se essa média sobre as áreas de lavoura temporária dos anos anteriores. Para o IBGE, o conceito de Lavouras temporárias utilizado no Censo Agropecuário abrangeu as áreas plantadas ou em preparo para o plantio de culturas de curta duração (via de regra, menor que um ano) e que necessitassem, geralmente de novo plantio após cada colheita, incluíram-se também nesta categoria as áreas das plantas forrageiras destinadas ao corte (IBGE, 2011).

Fontes: IBGE - SIDRA, 2010; CONAB, 2010; PIGNATI UFMT/ISC, 2010 (organizado pela autora).

Figura 03 - Evolução da utilização de Agrotóxicos em Mato Grosso, em milhões de litros, no período de 1996 a 2006.

Dessa forma a evolução da utilização de agrotóxicos no estado apresentou incremento de 150% no período entre 1996 e 2006, considerando somente a área de lavoura temporária.

As informações acerca da venda de agrotóxicos específicos por classe e ingredientes químicos se tornaram disponíveis a partir de 2005 em um relatório produzido pelo INDEA-MT, permitindo a realização de análise dos mais utilizados no estado.

A média anual de agrotóxicos comercializados em Mato Grosso nos anos de 2005 a 2009 foi de 78.230.415 milhões de litros, sendo 48% de Herbicidas, 33% de Inseticidas, 13% de Fungicidas e 6% dos ingredientes ativos não foram especificados.

No esforço de analisar o potencial cancerígeno dos agrotóxicos mais utilizados no estado, foram elaboradas as tabelas apresentadas a seguir de acordo com a revisão da literatura. Ressaltamos que alguns resultados foram controversos, o que ocorre na maioria das vezes devido ao tipo de estudo aplicado. Dessa forma, foi possível avaliar a média de utilização de ingredientes químicos associados à carcinogenicidade em estudos.

Tabela 09 - Ingredientes Ativos descritos na literatura como Carcinogênicos e a média de consumo nos anos de 2005 a 2009. Mato Grosso.

Ingrediente Ativo	Classe	Média	Estudos
		Anual	
GLIFOSATO	Н	19.844.64	EL-MOFTY; SAKR, 1988; MONROY et al.,
		1	2005; COX, 2004; CLAPP, 2007
ENDOSSULFAM	I	5.058.453	L'VOVA, 1984; ANVISA, 2009; NUNES;
			TAJARA,1998; REUBER, 1981
2,4 D	Н	4.363.291	MATOS et al., 2002; MILIGI et al., 2006, SULIK
			et al.,1998; HAYES et al,1995
TEBUCONAZOL	F	4.024.942	SERGENT et al., 2009;
			USEPA, 2006.
LACTOFEM	Н	1.428.468	BUTTLER et al.,1988
HALOXIFOPE P	Н	1.001.906	IARC, 1972 e 1987.
METÍLICO			-,
DIURON	Н	701.609	FERRUCIO et el.,2010;

			NASCIMENTO et al., 2009.
S-METACLORO	H 4	114.116	WHO, 1996 LEET et al, 1996; GRISOLIA, 2005. (continua)
METANO ARSENIATO	Н 3	318.582	MATANOSK et al., 1976; CHEN et al., 1992;
DE SODIO - MSMA			IARC, 1980.
IMIDACLOPRIDO	I 2	272.181	HARRIS et al., 2010.
THIODICARB	I 2	229.776	USEPA, 2006; HAYES & LAWS, 1991.
DIAFENTIUROM*	I 2	218.398	WANGENHEIM & BOLCSFOLDI, 1988.
CARBOFURANO	I 2	215.612	BONNER et al., 2005; HOUR et al., 1988;BARRI et al., 2011.
THIAMETHOXAM	I 1	172.777	GRENN et al., 2005; PASTOOR et al., 2005.

Nota: H- Herbicida, I- Inseticida, F-Fungicida, A- Adjuvante e RC-Registro Credenciamento *Cancerígeno e Mutagênico.

Fonte: INDEA-MT, organizada por W. Pignati, 2010 e adaptada pela autora.

Nesta tabela observou-se que dos agrotóxicos comercializados no estado entre os anos de 2005 a 2009 pelo menos 48,91% foram apontados nos estudos como carcinogênicos. Dentre os mais usados estão o Glifosato (25,91%), o Endossulfan (6,47%), o 2,4 D (5,58%) e o Tebuconazol (5,14%).

Tabela 10 - Ingredientes Ativos descritos na literatura como Potencialmente Carcinogênicos e a média de consumo nos anos de 2005 a 2009. Mato Grosso.

Ingrediente Ativo	Classe	Média Anual	Estudos
METAMIDOFÓS	I	6023458	AMER; SAVED, 1987, PEROCCO, et al.,
ATRAZINA	Н	3019684	1996. DONNA et al., 1989, CLAPP, 2007; MILLIGI, 2006.
CARBENDAZIM	F	1497100	MCCARROLL et al., 2002 ;GRISOLIA, 2005.
CLOMAZONA	Н	1041577	DONNA et al, 1989; GRISOLIA, 2005.
DIQUAT	Н	879092	FUNASA, 1998; MATOS et al., 2002; USEPA, 2006.
FLUTRIAFOL	F	799580	USEPA, 2006.
PARAQUATE	Н	678634	FUNASA, 1998; MATOS et al., 2002; USEPA, 2010.
ACEFATO	I	545824	PEROCCO et al.,1996; ANVISA, 2009.
TRIFLURALINA	Н	512108	DONNA et al.,1981; HURLEY et al., 1998.
PERMETRINA	I	498074	USEPA, 2006.
TRIFENIL HIDROXIDO DE ESTANHO) F	437229	WHO,1999; US EPA,1991.
CIPERMETRINA*	I	371183	CHAUHAN et al., 1997; GIRI et al., 2000; L'VOVA, 1984; USEPA, 2006.
TETRACONAZOL	F	274656	USEPA,2006.
ÓLEO MINERAL	A	4025795	AMA, 1994.

Nota: H- Herbicida, I- Inseticida, F-Fungicida, A- Adjuvante e RC-Registro Credenciamento

* Provavelmente Cancerígeno e Mutagênico.

Fonte: INDEA-MT, organizada por W. Pignati, 2010 e adaptada pela autora.

Dos agrotóxicos mais utilizados no estado, 23,64% são apontados como possivelmente carcinogênicos, isto é, são produtos que podem ser metabolizados em carcinógenos efetivos. Dentre eles salientam-se o Metamidofós (7,70%), a Atrazina (3,86%), o Carbendazim (1,91%) e a Clomazona (1,33%).

Tabela 11 - Ingredientes Ativos descritos na literatura como Não Comprovadamente Carcinogênicos e a média de consumo nos anos de 2005 a 2009. Mato Grosso.

Ingrediente Ativo	Classe	Média	Estudos
		Anual	
PARATIONA	I	1668894	WAGNER; MARENGO; PLEWA, 2003
METÍLICA			
IMAZETAPIR	Н	1134964	USEPA, 2006.
PYRACLOSTROBIN	F	1064344	MMWR, 2008
CLORPIRIFÓS	I	994269	USEPA, 2006
FENAXAPROP-P-	Н	805041	HARTLEY & KIDD,1987
ETHYL			
AZOXISTROBINA	F	783747	USEPA, 2006
FOMESAFEN	Н	601509	USEPA, 2006
TRIFLOXISTROBIN	F	468973	USEPA, 2006
MONOCROTOFOS	I	425876	SKRPSKY & LOOSLI,1994
FLUAZIFOP-P-	Н	329643	EPA, 1981
BUTILICO			
ETEFOM	RC	327258	HOWARD, 1991; USEPA,2006
CARBOXIN + THIRAM	F	256596	IARC,1972; WHO, 1991
LUFENURON	I	222768	USEPA, 2006
ÓLEO VEGETAL	A	267309	TEITELBAUM, 1969
ZETA-CIPERMETRINA	I	255526	CHAUHAN et al., 1997; GIRI et al., 2003;
CETHOXXVDIM	7.7	100473	L'VOVA, 1984
SETHOXYDIM	Н	192472	LIN &YANG,1999; USEPA, 2006.

Nota: H- Herbicida, I- Inseticida, F-Fungicida, A- Adjuvante e RC-Registro Credenciamento Fonte: INDEA-MT, organizada por W. Pignati, 2010 e adaptada pela autora.

Dos agrotóxicos comercializados no estado entre os anos de 2005 e 2009 apenas 11,95% não são comprovadamente carcinogênicos.

Não foram especificados 5,72% do total. Entretanto, 7,08% eram mutagênicos e é importante esclarecer que determinadas mutações somáticas - aquelas que se propagam pelo corpo do indivíduo - estão relacionadas à indução de processos carcinogênicos (ZAKRZEWSKI, 1991; GRISÓLIA, 2005).

Após revisão bibliográfica, foi possível observar que a maioria dos estudos realizados encontrou associação entre agrotóxicos específicos e câncer para compostos organoclorados e alguns herbicidas, como o 2,4 D.

Para o herbicida Glifosato (glicina substituída) foram encontradas referências que relacionam diretamente este ingrediente ativo a ocorrência de Linfoma não Hodgkin (HARDELL, 2002; COX, 2004; DE ROOS et al, 2003) e Mieloma Múltiplo (DE ROSS et al, 2005). Além do Glifosato, artigos apontam para uma associação positiva entre o uso de Carbofurano (metilcarbamato de benzofuranila) e o desenvolvimento de câncer de pulmão (BONNER et al, 2005) e entre o uso do herbicida Paraquat e tumores no sistema nervoso central (LEE et al, 2005).

Autores como SOLOMON et al. (2000) e CLAPP et al. (2007), realizaram uma extensa revisão bibliográfica sobre o assunto e encontraram artigos que relacionam agrotóxicos a diversos tipos de câncer, aí incluídos os cânceres hematológicos, do trato respiratório, gastrointestinais e do trato urinário, entre outros.

Nos últimos 15 anos, diversas revisões sobre câncer em agricultores foram publicadas, reforçando a hipótese de que a atividade agrícola, que tem a exposição a agroquímicos como uma de suas principais características, aumenta o risco de desenvolvimento de determinados cânceres em seres humanos. Dentre os que têm merecido maior destaque na literatura estão os cânceres hematológicos - leucemias e linfomas - e os hormônios-dependentes - próstata, testículos, mama, ovário e tireoide - (ACQUAVELLA et al., 1998; BLAIR et al.,1992; BLAIR e ZAHM, 1995; BLAIR et al.,2005; DICH et al., 1997; KELLER-BYRNE et al., 1995; KELLER-BYRNE et al., 1997; KHUDER et al., 1998; VAN MAELE-FABRY & WILLEMS, 2004).

Além destes, muitos estudos relacionam grupos químicos, como Organofosforados e Carbamatos e classes, como Fungicidas, a diversos cânceres e exposição ambiental ou ocupacional, porém sem especificar as substâncias separadamente (EKSTRÖM et al, 1999; ALGUACIL, et al. 2000; MAO, et al. 2000; JI, et al. 2001; MCDUFFIE et al, 2001; SHARPE, et al. 2001; WADDELL, et al. 2001; ZHENG, et al. 2001; HU et al, 2002; ALAVANJA et al, 2003).

No estrato Estado/Situação o indicador de uso de agrotóxicos permitiu observar que o ambiente e a população mato-grossense estão expostos a uma quantidade muito grande de substâncias cancerígenas e mutagênicas e podem estar sendo afetados direta ou indiretamente, refletindo na incidência e prevalência do câncer.

CAPITULO IV

CÂNCER

"permite dialetizar la salud/enfermedad y las prácticas que la constituyen, dejando lugar al reconocimiento de varios planos de emergência..." (SAMAJA, 1997).

4. CÂNCER

Câncer é o nome dado a um conjunto de mais de 100 doenças que têm em comum o crescimento desordenado (maligno) de células que invadem os tecidos e órgãos, podendo espalhar-se (metástase) para outras regiões do corpo. Dividindo-se rapidamente, estas células tendem a ser muito agressivas e incontroláveis, determinando a formação de tumores (acúmulo de células cancerosas) ou neoplasias malignas.

Os diferentes tipos de câncer correspondem aos vários tipos de células do corpo. Outras características que diferenciam os diversos tipos de câncer entre si são a velocidade de multiplicação das células e a capacidade de invadir tecidos e órgãos vizinhos ou distantes (metástases) (RIBEIRO et al., 2003).

O câncer é responsável por mais de 12% de todas as causas de óbito no mundo, mais de 7 milhões de pessoas morrem anualmente da doença. A maioria dos 12,7 milhões de novos casos de câncer e 7,6 milhões de mortes pela doença em 2008 ocorreu em países em desenvolvimento (IARC, 2010), nos quais a soma de casos novos diagnosticados a cada ano atinge 50% do total observado nos cinco continentes (OPAS, 2002).

Para a Union for Internacional Câncer Control (UICC, 2005) como a esperança de vida no planeta tem melhorado gradativamente, a incidência de câncer alcançará mais de 15 milhões em 2020. Constituindo assim, problema de saúde pública para o mundo.

LESSA et al., (1996) referem que os fatores ambientais são os mais importantes para a ocorrência da maioria dos cânceres. Segundo a American Cancer Society (2003) e o INCA (1996), dentre todos os casos de neoplasias, apenas 5 a

10% são de causa hereditária (predisposição individual), enquanto 80% a 90% estão associados a fatores ambientais.

Esta distribuição resulta de exposição diferenciada a fatores ambientais relacionados ao processo de industrialização, como agentes químicos, físicos e biológicos, e das condições de vida, que variam de intensidade em função das desigualdades sociais e sugere uma transição em andamento (GUERRA et al., 2005).

Algumas possíveis explicações para o crescimento da incidência das neoplasias malignas são as alterações demográficas, com redução das taxas de mortalidade e natalidade, e consequente prolongamento da expectativa de vida e envelhecimento populacional, levando ao aumento da incidência de doenças crônico-degenerativas; a redefinição dos estilos de vida, com alteração de hábitos nutricionais e comportamentais; a exposição a agentes biológicos (vírus e bactérias) e a exposição a agentes físicos e químicos, no contexto ou não de atividades de trabalho (MS/INCA, 2006).

No Brasil, o câncer é a segunda causa de morte por doença. Cerca de 30% dos casos de cânceres poderiam ser evitados através de ações de prevenção primária. Ocorre, simultaneamente, o aumento da prevalência de cânceres associados ao melhor nível socioeconômico - câncer de mama, próstata e cólon e reto - e, simultaneamente, a presença de taxas de incidência persistentemente elevadas de tumores geralmente associados à pobreza - câncer de colo de útero, pênis, estômago e cavidade oral (MS/INCA, 2010).

As estimativas do INCA para o ano de 2012 indicam taxas brutas de incidência de 267,99 por 100.000 homens e 259,86 por 100.000 mulheres no Brasil e de 313,23 por 100.000 homens e de 239,63 por 100.000 mulheres no Estado de Mato Grosso. Os tipos mais incidentes, à exceção do câncer de pele do tipo não melanoma, serão os cânceres de próstata e de pulmão no sexo masculino e os cânceres de mama e de colo do útero no sexo feminino, acompanhando o mesmo perfil da magnitude observada no mundo (MS/INCA, 2010).

No ano de 2008, foram registradas para o país taxas de mortalidade de 93,20 óbitos para cada 100.000 homens e de 77,10 para cada 100.000 mulheres. No Estado de Mato Grosso foram registradas taxas de mortalidade de 70,24 por 100.000 homens e 52,67 por 100.000 mulheres (INCA, 2009).

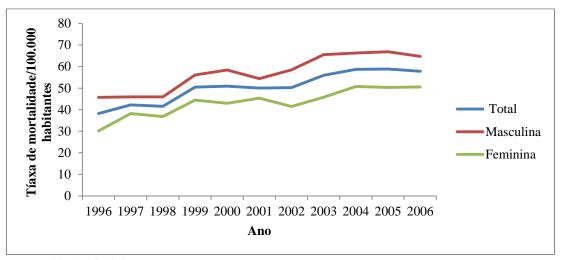
A mortalidade por neoplasias reflete as variações na incidência do câncer decorrentes de perfis heterogêneos de exposição a fatores de risco e modos de vida, além de ser influenciada pela qualidade das informações e das diferenças nas condições de acesso, uso e desempenho dos serviços de saúde (MS/INCA, 2006).

Para contextualizar a doença no Estado de Mato Grosso optou-se por realizar um estudo de tendência de mortalidade tendo em vista que, as mudanças históricas ocorridas, o crescimento econômico, a produtividade agrícola e o uso de agrotóxicos refletem na magnitude e perfil temporal da doença.

4.1 Tendência da Mortalidade por Câncer em Mato Grosso

Em Mato Grosso, de todos os óbitos registrados, a mortalidade por câncer passou de 10,17% em 1996 para 12,76% em 2006, representando a segunda causa de morte por doença no estado.

De acordo com a tabela 12, a estimativa do coeficiente no período foi mais elevada para o sexo masculino (43,023) comparada com o feminino (32,810) e o incremento médio foi de 2,356 e de 1,757 óbitos ao ano respectivamente. O modelo de regressão linear ajustou-se com melhor nível de significância para os dados.

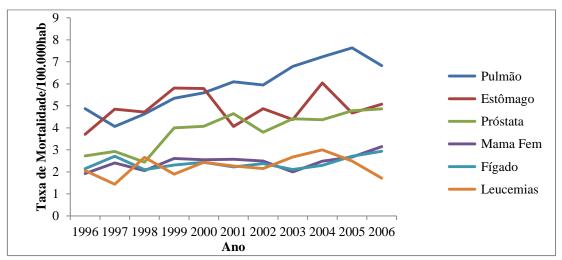

Tabela 12 - Estimativas referentes à equação de regressão linear, segundo sexo. Mato Grosso, 1996-2006.

	ÓBITOS POR NEOPLASIAS										
Sexo	\mathbf{B}_0	\mathbf{B}_1	p-valor	\mathbb{R}^2	Tendência						
Masculino	43,023	2,356	< 0,001	0,869	↑						
Feminino	32,810	1,757	< 0,001	0,821	↑						
Total	38,116	2,059	< 0,001	0,894	↑						

Fonte: MS/DATASUS/SIM, 2010.

Observou-se aumento na taxa de óbitos por neoplasias por todas as localizações. Sendo que a taxa de mortalidade por câncer passou de 38,20 por 100.000 habitantes em 1996 para 57,86 por 100.000 habitantes em 2006. Portanto, apresentou um aumento de 93,56% (Figura 05).

Figura 04 - Taxa de mortalidade por neoplasias por 100.000 habitantes, segundo sexo. Mato Grosso, 1996-2006.


Fonte: MS/DATASUS/SIM

Na comparação entre sexos, as taxas de mortalidade apontaram para um maior risco entre homens. A taxa de mortalidade masculina aumentou de 45,75 por 100.000 em 1996 para 64,77 por 100.000 em 2006, enquanto a taxa de mortalidade feminina aumentou de 30,14 por 100.000 em 1996 para 50,53 por 100.000 em 2006. Em ambos, a tendência foi de crescimento, o que pode estar refletindo um aumento real na incidência do câncer no estado.

No mesmo período ocorreu melhora na qualidade das informações de mortalidade, constatada pela redução da mortalidade por causas mal definidas no estado (DATASUS, 2007).

Segundo a Organização Mundial de Saúde (OMS, 2002) sobressaem-se, entre os cinco tipos de câncer mais frequentes os tumores de pulmão, de cólon e reto e de estômago, tanto nos países industrializados, quanto nos países em desenvolvimento. A distribuição dos tipos de câncer mais frequentes no estado foi demonstrado na Figura 6.

Figura 05 - Taxa de mortalidade por topografías mais frequentes. Mato Grosso, 1996 - 2006.

Fonte: MS/DATASUS/SIM

Observou-se na Figura 06 que em Mato Grosso as topografias mais frequentes foram os tumores de pulmão, estômago, próstata, mama, fígado e as leucemias, no período de estudo.

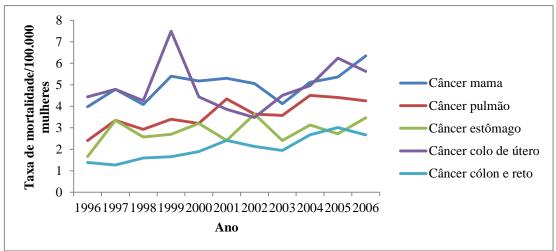

De acordo com os dados de dez registros de câncer de base populacional do Brasil, os tumores mais frequentes são próstata, pulmão, estômago, cólon e reto e esôfago na população masculina. Em mulheres, predomina o câncer de mama, seguido pelos cânceres de colo uterino, cólon e reto, pulmão e estômago (INCA, 2010). A frequência observada segundo sexo no período avaliado em Mato Grosso, foi demonstrada nas Figuras 07 e 08.

Figura 06- Taxa de mortalidade por topografias mais frequentes no sexo masculino. Mato Grosso, 1996 a 2006.

Fonte: MS/DATASUS/SIM

Entre os homens observou-se crescimento das taxas para câncer de pulmão e próstata, com leve diminuição para o câncer de estômago que era a principal causa de morte por câncer entre os homens até o ano 2000.

Figura 07- Taxa de mortalidade por topografias mais frequentes no sexo feminino. Mato Grosso, 1996 a 2006.

Fonte: MS/DATASUS/SIM

Entre as mulheres, observou-se crescimento das taxas para câncer de mama e pulmão, com leve diminuição para o câncer de estômago, assim como entre os homens. Esse dado pode estar indicando melhora nas condições de conservação dos

alimentos. A mortalidade por câncer do colo do útero ainda manteve crescimento ascendente no período. Destacou-se o crescimento da mortalidade por câncer de pulmão (em segundo lugar) o que provavelmente se deve ao aumento do tabagismo entre as mulheres nas últimas décadas.

A tendência de crescimento da mortalidade geral por neoplasias no estado no período estudado pode estar relacionada à crescente utilização de agrotóxicos conforme observado no capítulo anterior, o que corrobora estudo de CHRISMAN et al. (2009) em vários estados do Brasil.

No entendimento de que o grupo infanto-juvenil seja o mais suscetível aos fatores ambientais, especialmente por tratar-se de uma faixa etária exposta desde o nascimento às transformações geradas pelo modelo produtivo no estado e de que estudos têm revelado associação entre a exposição aos agrotóxicos durante a infância com tumores hematológicos e de cérebro (MILLS & ZAHM, 2001), selecionou-se o grupo de menores de 20 anos para detalhar as suas características no Estado de Mato Grosso.

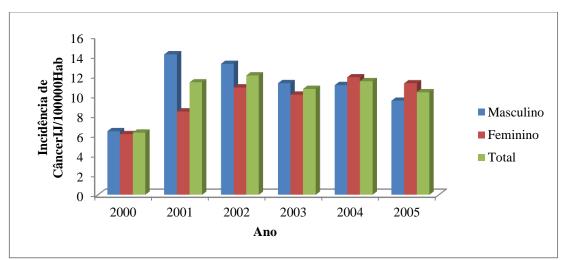
4.2 Câncer Infanto-juvenil

O câncer infanto-juvenil não pode ser considerado uma simples doença, mas sim como uma gama de diferentes malignidades. Esse tipo de câncer varia de acordo com o tipo histológico, localização primária do tumor, etnia, sexo e idade. É considerado raro quando comparado com os tumores do adulto, correspondendo entre 2% e 3% de todos os tumores malignos. Entretanto, merece lugar de destaque, pois representa, nessa faixa etária, importante causa de mortalidade e perda de

potenciais anos de vida. Além disso, o desgaste psíquico, social e financeiro confere um impacto profundo nos pacientes, nas famílias, na sociedade e no sistema público de saúde (MIRRA et al., 2004; MS/INCA, 2008).

Por apresentar diferenças nos locais primários, diferentes origens histológicas e diferentes comportamentos clínicos, o câncer nesta faixa etária deve ser estudado separadamente do câncer do adulto Tende a apresentar menores períodos de latência, costuma crescer rapidamente e torna-se bastante invasivo, porém responde melhor à quimioterapia. A maioria dos tumores pediátricos apresenta achados histológicos que se assemelham a tecidos fetais nos diferentes estágios de desenvolvimento, sendo considerados embrionários. Essa semelhança a estruturas embrionárias gera grande diversidade morfológica resultante das constantes transformações celulares, podendo haver um grau variado de diferenciação celular (BRAGA et al., 2002; MS/INCA, 2008).

As neoplasias mais frequentes entre crianças e adolescentes são as leucemias, os tumores do sistema nervoso central e os linfomas. Mais raros, mas igualmente típicos são neuroblastoma, tumores renais (tumor de Willms), retinoblastoma, tumores germinativos, osteossarcomas e sarcomas de tecidos moles (MS/INCA, 2006).


4.2.1 Incidência do Câncer Infanto-juvenil em Mato Grosso

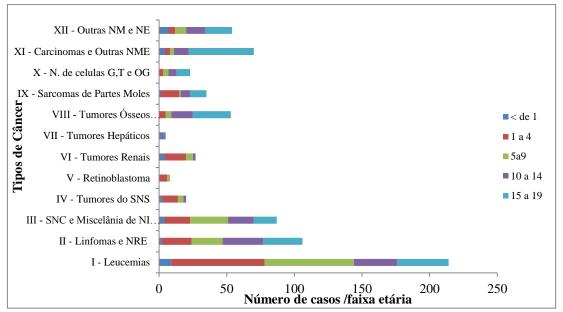
O Estado de Mato Grosso possui uma população jovem. No censo do ano de 2010, 35,05% da população mato-grossense encontrava-se abaixo dos 20 anos de idade (IBGE, 2011).

Nas informações do RCBP de Mato Grosso para o período de 2000 a 2005 foram registrados 702 pacientes com câncer com idade entre 0 e 19 anos, representando 3,26% do total de casos de câncer admitidos, sendo 377 do sexo masculino e 325 do feminino. Os pacientes pediátricos (menores de 15 anos) representaram 2,31% do total de casos admitidos e os pacientes adolescentes (entre 15 e 19 anos) representaram 0,94% do total.

Na Figura 09, foi apresentada a distribuição da incidência de câncer em menores de 20 anos, de acordo com o sexo, no estado de Mato Grosso no período estudado. Atentando que no ano de 2000 foram registrados apenas os casos dos municípios de Cuiabá e Várzea Grande.

Figura 08- Distribuição de Incidência de câncer infanto-juvenil segundo ano de diagnóstico e sexo. Mato Grosso, 2000-2005.

Fonte: RCBP- MT, 2010.


Nota:* Ano de 2000 somente população de Cuiabá e Várzea Grande.

Observou-se, na Figura 09, maior incidência no sexo masculino até o ano de 2003, porém no ano de 2004 ocorreu uma inversão que se manteve em 2005.

A Figura 10 apresenta a distribuição das neoplasias mais frequentes para as faixas etárias entre 0 e 19 anos. No período de estudo, entre as crianças, ocorreram 176 casos de leucemias (35,27 %), 77 de linfomas (15,43%) e 70 de tumores do SNC e miscelâneas de neoplasias intracranianas e intra-espinhais (14,03%). Entre os adolescentes, ocorreram 48 casos de carcinomas e outras neoplasias malignas

epiteliais (23,65%), 38 leucemias (18,72%), 29 linfomas (14,29%) e 28 tumores ósseos malignos (13,79%).

Figura 9- Número de casos por tipo de câncer infanto-juvenil, segundo faixa etária. Mato Grosso, 2000 a 2005.

Fonte: RCBP- MT, 2010.

Na Figura 10, observou-se no período estudado que a incidência de Leucemias foi de 30,48% (214 casos) para menores de 20 anos, sendo 35,27% em menores de 15 anos e 18,72% nos adolescentes. O grupo de Linfomas e neoplasias retículo-endoteliais corresponde ao segundo mais incidente (15,10%) no período, sendo a maioria Linfoma Não-Hodgkin, no sexo masculino e em menores de 15 anos.

Observou-se nesta figura que o terceiro grupo mais incidente foi de Tumores de sistema nervoso central e miscelânia de neoplasias intracranianas e intra-espinhais (70 casos em crianças e 17 em adolescentes), sendo Neoplasias intracranianas e intra-espinhais não especificadas (44 casos), Astrocitomas (20 casos) e Tumores neuroectodérmicos primitivos (13 casos).

Registraram-se para os demais tipos de câncer infanto-juvenil, no período de estudo, 20 casos (4%) no grupo Sistema Nervosos Simpático em menores de 15

anos; 1,6% de retinoblastoma entre os menores de 15 anos (todos os casos registrados até o sexto ano de vida); 27 casos de tumores renais em menores de 15 anos, correspondendo a 5,41% dos tumores infantis; 03 casos de hepatoblastoma em menores de 1 ano de idade e 01 hepatocarcinoma em adolescente; 7,55% de tumores ósseos malignos, sendo 4,27% de osteossarcomas na faixa etária entre 10-19 anos; 4,99% de casos no grupo dos Sarcomas de Partes Moles; 3,28% de neoplasias de células germinativas, trofoblásticas e outras gonadais e 9,97% de carcinomas e outras neoplasias epiteliais.

Em um estudo da procedência segundo municípios de residência dos pacientes menores de 20 anos diagnosticados no período de 2000-2005 observou-se que 42,74% provêm da região metropolitana de Cuiabá e Várzea Grande e 57,26% dos municípios do interior do Estado (RCBP-MT, 2011).

4.2.2 Mortalidade Infanto-juvenil por Câncer em Mato Grosso

Em estudo comparativo observou-se que em Mato Grosso a mortalidade por câncer em crianças e adolescentes com idade entre 0 e 19 anos passou de 2,82% em 1996 para 3,76% em 2006 dos óbitos registrado. No ano de 2006 configurou-se como a segunda causa de morte nesta faixa etária, correspondendo a 8% de todos os óbitos.

De acordo com LITTLE (1999), este achado configura o estado com taxas semelhantes aos dos países desenvolvidos, que apresentam o câncer como a segunda causa de óbito entre 0 e 14 anos, atrás apenas dos acidentes.

Na Tabela 13, distribuíram-se os tipos de óbitos por câncer em menores de 20 anos, segundo sexo nos anos de 2000 a 2006, no Estado de Mato Grosso.

Tabela 13 - Distribuição de óbitos e percentual de mortalidade por sexo, segundo causa básica, em menores de 20 anos. Mato Grosso, 2000 a 2006.

Causa Básica	Masculino	%	Feminino	%	Total	%
Leucemias	70	33,33	52	30,23	122	31,94
SNC	40	19,05	37	21,51	77	20,16
Linfomas	22	10,48	5	2,91	27	7,07
Outras Neoplasias	78	37,14	78	45,35	156	40,84
Total	210	54,97	172	45,03	382	100,00

Fonte: SIM/DATASUS/MS

Segundo a Tabela 13, de todos os óbitos por câncer em menores de 20 anos no Estado de Mato Grosso registrados no SIM/DATASUS entre os anos de 2000 e 2006, as leucemias representaram a maior causa, sendo responsáveis por 31,94%; os tumores do SNC foram a segunda causa dos óbitos (20,16%); os Linfomas Não-Hodgkin foram responsáveis por 7,07% e os Tumores Hepáticos por 2% dos óbitos.

4.2.3 Associação entre Câncer Infanto-Juvenil e uso de agrotóxicos nos municípios de Mato Grosso

Para analisar a associação entre o uso de agrotóxicos nos municípios do estado e o Câncer em crianças e adolescentes optou-se por trabalhar com as médias, tendo em vista diferentes fontes, períodos e unidades de mensuração dos dados disponíveis. Dessa forma, foi testada a correlação entre a média de uso de agrotóxicos, de casos novos e de óbitos por câncer, na faixa etária de 0-19 anos, nos municípios de Mato Grosso, nos períodos apresentados (Anexo II). Essa associação foi apresentada na Tabela 14.

Tabela 14 - Associação entre média de uso de agrotóxicos nos municípios de Mato Grosso e casos novos e óbitos por câncer infanto-juvenil (IJ) nos períodos apresentados.

Correlação	Média de agrotóxicos***	Número de Municípios	Período
Média de casos novos de Câncer IJ*	p = 0.021	85	2001-2005
Média de óbitos por Câncer IJ**	p = 0.005	82	2000-2006

Fonte:*RCBP Mato Grosso, 2010.

Nesta tabela observou-se que a média de uso de agrotóxicos nos munícipios apresentou associação estatisticamente significante tanto para morbidade por câncer em menores de 20 anos (p=0,021), como para mortalidade por câncer infanto-juvenil (p=0,005), com IC de 95%.

Cabe salientar que foram excluídos os municípios de Cuiabá, Várzea Grande e Rondonópolis a fim de caracterizar o uso agrícola de agrotóxicos.

O intenso uso de agrotóxicos no estado de Mato Grosso configura-se em um dos fatores ambientais de grande relevância para explicar o aumento de alguns tipos de câncer na faixa etária de 0-19 anos. A maior parte do uso de agrotóxicos no estado está relacionada à agricultura.

ZAHM & WARD (1998) publicaram extensa revisão de estudos epidemiológicos com associação entre exposição a agrotóxicos e tumores da infância, especialmente leucemia, SNC, neuroblastoma, linfoma não-Hodgkin, tumor de Wilms e sarcoma de Ewing.

Para os autores, crianças e adolescentes que vivem nas áreas de cultivo ou próximas a elas podem estar expostas através da aplicação agrícola, da deriva das aplicações e/ou do excesso de pulverização. Crianças pequenas, que permanecem no chão ou solo e que colocam as mãos e objetos na boca, podem estar mais sujeitas a exposição. Além disso, observaram que os pais expostos de forma ocupacional podem trazer agrotóxicos para casa nas roupas e equipamentos, aumentando o risco de adoecimento por câncer dos filhos e que o risco também aumenta de acordo com o grau de exposição das mães durante a gravidez.

^{**}SIM/DATASUS, 2010.

^{***}Matriz Pignati ISC/UFMT, 2010.

SANBORN et al.(2007), publicaram revisão sistemática sobre o câncer infanto-juvenil e o uso de agrotóxicos. Encontraram forte e consistente associação entre o linfoma não-Hodgkin e a leucemia em crianças que tiveram exposições mais longas e com maiores doses de agrotóxicos. O estudo concluiu que seus resultados apoiam tentativas de reduzir a exposição a agrotóxicos como uma medida para evitar câncer.

Para o Brasil, o estudo de RIBEIRO (2007) demonstrou uma tendência decrescente na mortalidade por leucemias para o período entre 1980 e 2002. Segundo o autor, essa redução foi maior nos estados mais desenvolvidos. Porém isso não ocorreu em Mato Grosso no período estudado, pois a tendência linear foi de crescimento.

As taxas de mortalidade para tumores cerebrais no Brasil em menores de 20 anos foram analisadas por MONTEIRO & KOIFMAN em 2003, quando observaram um crescimento de 2,24/100.000 habitantes para 3,35/100.000 habitantes, correspondendo a um aumento de 50% no período estudado (1980-1998). Essas taxas foram mais elevadas na infância que na adolescência, aumentando posteriormente com a idade. Os autores sugerem que este crescimento pode ser explicado parcialmente pela maior disponibilidade de acesso aos cuidados com a saúde, em particular aos meios de diagnóstico por imagem, entretanto há evidências de que há outros fatores etiológicos relacionados, como a possível introdução de carcinógenos (INCA, 2008).

O achado nesse estudo corrobora a hipótese de que a exposição desde o nascimento às transformações ocasionadas pelo modelo produtivo, especialmente aos agrotóxicos, tem relação estatisticamente significante com os indicadores de morbidade e de mortalidade por câncer em menores de 20 anos nos munícipios do estado de Mato Grosso, nos períodos estudados.

CAPITULO V

SISTEMATIZAÇÃO DOS INDICADORES

"É essencial a esta tese, o reconhecimento de que cada ciclo reprodutivo introduz necessariamente modificações em suas condições prévias. Cada ciclo de reprodução tende a produzir o mesmo tipo de ciclo, mas nunca pode repetir o ciclo singular que acaba de transcorrer. Nada pode retornar" (SAMAJA, 2000, p73).

5. SISTEMATIZAÇÃO DOS INDICADORES

A partir da seleção dos indicadores, nos níveis de macro e micro contexto do Estado de Mato Grosso, que representam a relação existente entre os condicionantes sócio-econômico-ambientais e os efeitos na morbidade e mortalidade por câncer, apresentados nos capítulos anteriores, aplicou-se o modelo baseado na Cadeia FPEEEA (OMS, 1998), tendo por unidade de análise os municípios do estado, sendo que no ano de 1996 haviam 117 municípios emancipados e no ano de 2006 os atuais 141 municípios.

5.1 Indicadores selecionados

Os indicadores selecionados foram analisados por meio de regressão linear múltipla, tendo por variáveis dependentes os indicadores de efeitos à saúde e como variáveis independentes os indicadores testados nos componentes - Estado, Pressão e Força Motriz. Todas as correlações apresentaram significância estatística, considerando um nível de significância menor que 0,05 (p<0,05).

Em cada componente foi utilizada a média dos indicadores selecionados, levando-se em consideração as diferentes fontes e unidades de mensuração dos mesmos. Conforme proposto pela abordagem do GEO Saúde (HACON, 2008), a média dos indicadores foi convertida em índice (medida padronizada) com variação de 0 a 1, sem unidade de medida, através da aplicação da fórmula:

Índice = (valor máximo - valor observado)/ (valor máximo - valor mínimo)

Os resultados obtidos foram categorizados em Pior (0-0,70), Médio (0,71-0,89) e Melhor (0,90-1) e os componentes da matriz foram testados nos municípios do estado nos anos de 1996 e 2006. As tabelas contendo esses resultados encontramse no Anexo III.

A categorização dos resultados permitiu uma análise inicial comparativa (em porcentagem) da evolução das transformações nos municípios identificadas em cada componente da matriz, apresentada na Tabela 15.

Tabela 15 - Comparativo da Porcentagem de Municípios classificados de acordo com os resultados dos Índices nos Componentes da Matriz, entre os anos de 1996 e 2006.

Índices	Resultados(%) 1996					Resultados(%) 2006				
	Pior	Médio	Melhor	SD*	Pior	Médio	Melhor	SD*		
a-Componente Força Motriz:	4,27	20,52	75,21	0	22,7	77,3	0	0		
b-Componente Pressão:	5,98	13,68	80,34	0	9,93	53,9	36,17	0		
c-Componente Estado:	1,71	7,69	90,6	0	5,67	7,81	82,27	4,25		
d-ComponenteExposição:										
População Geral	2,57	4,27	93,16	0	2,13	3,55	93,61	0,71		
População Infanto-juvenil	2,57	4,27	93,16	0	2,13	3,55	93,61	0,71		
e-Componente Efeito:										
Óbitos por Câncer Geral	1,71	1,71	72,65	23,93	2,13	2,13	90,78	4,96		
Óbitos por Câncer Infanto-juvenil	0,85	1,71	15,39	82,05	0	0	89,36	10,64		

Nota: * SD = sem registro de dados

De acordo com a Tabela 15, observou-se no Componente Força Motriz que 4,27% dos municípios foram identificados com pior resultado em 1996 e passaram para 22,70% em 2006. Em 1996, 20,52% dos municípios foram identificados com resultados médios e em 2006 foram 77,30% dos municípios do estado. Entretanto, com melhores resultados de força motriz, foram classificados 75,21% dos municípios em 1996 e nenhum em 2006.

Foram identificados 5,98% dos municípios do estado com piores índices de Pressão em 1996 e aumentaram para 9,93% em 2006. Com resultados médios, eram 13,68% dos municípios em 1996 e passou para 53,90% no ano de 2006. Porém dos

80,34% dos municípios classificados com altos resultados, restaram 36,17% em 2006. Percebe-se piora nos indicadores de Pressão no comparativo entre esses anos.

Com relação ao uso de agrotóxicos, indicador selecionado para o Componente Estado/Situação, observou-se em 1996 apenas 1,71% dos municípios com piores resultados e aumentou para 5,67% em 2006. O percentual de municípios identificados com resultado médio manteve-se entre 7 e 8 % nos anos avaliados. Porém o percentual de municípios com melhores resultados diminuiu de 90,60% em 1996 para 82,27% em 2006, sendo que 4,25% dos municípios não possuía registros nesse ano.

O índice de exposição da população geral e da população infanto-juvenil se manteve em 93%, por tratar-se de indicador estimado pelo IBGE para os dois anos.

Para o Componente Efeito foram selecionados os óbitos por câncer na população geral e óbitos por câncer na população infanto-juvenil e observou-se que 23,93% dos municípios não apresentaram óbitos por câncer na população geral no ano de 1996, porém no ano de 2006, somente 4,96% dos municípios não registraram óbitos por câncer. Com relação ao índice de óbitos por câncer na população infanto-juvenil, 82,05% dos municípios não apresentaram registro no ano de 1996, no entanto esse dado diminui para 10,64% em 2006.

Na análise preliminar comparativa dos resultados dos índices em cada componente da matriz, nesses onze anos percebeu-se piora nos indicadores de Força Motriz, de Pressão, de Estado/Situação e de Efeito.

5.2 Índices Integrados

Considerando-se o marco teórico do método GEO Saúde (HACON, 2008), no qual um componente influencia o componente a seguir na cadeia, optou-se pela construção de indicadores integrados de Força Motriz e Pressão (IIFMP); Força Motriz e Estado (IIFME); Força Motriz, Pressão e Estado (IIFMPE); além dos indicadores integrados de Saúde Ambiente para Óbitos por Câncer na População Geral (ISACPG) e na População Infanto-juvenil (ISACPIJ). Para tanto, os resultados de cada componente foram convertidos em índices nos quais o menor valor corresponde ao pior resultado e o maior valor ao melhor resultado. Foram então obtidos os índices com variação de 0 a 1.

Estes Índices Integrados foram aplicados aos municípios do estado de Mato Grosso permitindo análise dos anos de 1996 e 2006, conforme descritos a seguir:

Índice integrado de Força Motriz e Pressão (IIFMP) - obtido pela soma dos dois índices dividido por dois.

Tabela 16 - Índice Integrado de Força Motriz e Pressão. Mato Grosso, 1996.

Ordem	Municípios	IIFMP	Ordem	Municípios	IIFMP	Ordem	Municípios	IIFMP	Ordem	Municípios	IIFMP
:	Campo Novo do Parecis	0,2938	31	Poxoréo	0,9170	61	Vila Rica	0,9696	91	Jangada	0,9865
- 2	Cuiabá	0,4995	32	Santo Afonso	0,9249	62	Rosário Oeste	0,9724	92	Nova Bandeira	0,9868
3	Barra do Bugres	0,5784	33	Guiratinga	0,9293	63	Campinápolis	0,9736	93	Glória D'Oeste	0,9873
4	Nova Olímpia	0,6195	34	Aripuanã	0,9315	64	Nobres	0,9737	94	Nortelândia	0,9873
	Denise	0,6471	35	Lambari D'Oeste	0,9337	65	Nossa Senhora do	0,9748	95	Canabrava do	0,9876
(Diamantino	0,6797	36	Água Boa	0,9350	66	Cláudia	0,9765	96	Santa Terezinh	0,9878
-	7 Sorriso	0,7060	37	Barra do Garças	0,9379	67	Marcelândia	0,9781	97	Planalto da Se	0,9880
8	Rondonópolis	0,7179	38	Paranatinga	0,9405	68	Brasnorte	0,9790	98	Nova Guarita	0,9889
9	Jaciara	0,7287	39	Juína	0,9409	69	Salto do Céu	0,9793	99	Nova Monte V	0,9893
10	Primavera do Leste	0,7789	40	Colíder	0,9417	70	Cocalinho	0,9795	100	Nova Brasilâno	0,9898
11	Várzea Grande	0,7825	41	Canarana	0,9429	71	Itaúba	0,9795	101	Nova Marilând	0,9898
12	! Itiquira	0,8097	42	Guarantã do Norte	0,9432	72	Nova Canaã do No	0,9801	102	Rio Branco	0,9903
13	Tangará da Serra	0,8353	43	Vera	0,9445	73	São Félix do Aragu	0,9804	103	Apiacás	0,9904
14	Lucas do Rio Verde	0,8452	44	Vila Bela da Santíssim	0,9448	74	Santa Carmem	0,9806	104	Cotriguaçu	0,9916
15	Campo Verde	0,8467	45	São José dos Quatro I	0,9484	75	Matupá	0,9809	105	São José do Po	0,9922
16	Nova Mutum	0,8574	46	Juara	0,9500	76	Tesouro	0,9826	106	Tabaporã	0,9930
17	Novo São Joaquim	0,8606	47	São Pedro da Cipa	0,9516	77	Porto Esperidião	0,9827	107	Porto Estrela	0,9932
18	Cáceres	0,8638	48	Nova Xavantina	0,9534	78	Acorizal	0,9828	108	Juruena	0,9933
19	Poconé	0,8663	49	Araputanga	0,9545	79	Porto Alegre do No	0,9829	109	Alto Boa Vista	0,9935
20	Alta Floresta	0,8868	50	Mirassol d'Oeste	0,9587	80	Ribeirão Cascalhei	0,9831	110	Pontal do Arag	0,9937
21	São José do Rio Claro	0,8870	51	Peixoto de Azevedo	0,9599	81	Figueirópolis D'Oe	0,9834	111	Novo Horizont	0,9942
22	Comodoro	0,8880	52	Alto Paraguai	0,9613	82	Castanheira	0,9840	112	Araguaiana	0,9947
23	Pedra Preta	0,8908	53	Terra Nova do Norte	0,9616	83	Porto dos Gaúchos	0,9841	113	Reserva do Cal	0,9968
24	Pontes e Lacerda	0,8941	54	General Carneiro	0,9636	84	Arenápolis	0,9842	114	Ribeirãozinho	0,9977
25	Dom Aquino	0,8972	55	Santo Antônio do Lev	0,9645	85	Indiavaí	0,9855	115	Ponte Branca	0,9979
26	Alto Taquari	0,9020	56	Tapurah	0,9669	86	Nova Maringá	0,9856	116	Luciara	0,9983
27	Alto Garças	0,9041	57	Alto Araguaia	0,9674	87	Paranaíta	0,9859	117	Araguainha	1,0000
28	Confresa	0,9059	58	Jauru	0,9683	88	Querência	0,9861			
29	Juscimeira	0,9133	59	Chapada dos Guimarâ	0,9685	89	Barão de Melgaço	0,9861			
30	Sinop	0,9150	60	São José do Xingu	0,9690	90	Torixoréu	0,9862			

Para o ano de 1996 o IIFMP variou de 0,92 a 0,41 e os municípios de Campo Novo do Parecis, Alta Floresta, Sorriso, Cáceres, Rondonópolis e Diamantino apresentaram os piores resultados.

Tabela 17 - Índice Integrado de Força Motriz e Pressão. Mato Grosso, 2006.

Ordem	Municípios	IIFMP	Ordem	Municípios	IIFMP	Ordem	Municípios	IIFMP	Ordem	Municípios	IIFMP
1	. Campo Verde	0,5570	36	Sapezal	0,7543	71	Nova Nazaré	0,8093	106	Alto Boa Vist	0,8469
2	Sorriso	0,5824	37	Santa Rita do Trive	0,7550	72	Conquista D'Oest	0,8099	107	Nova Lacerda	0,8491
3	Campo Novo do Parecis	0,5963	38	Água Boa	0,7570	73	Porto Esperidião	0,8115	108	Denise	0,8492
4	Cáceres	0,6193	39	Sinop	0,7586	74	Paranaíta	0,8121	109	Feliz Natal	0,8497
5	Paranatinga	0,6410	40	Vila Rica	0,7608	75	Nova Monte Verd	0,8138	110	Várzea Grand	0,8515
ε	Itiquira	0,6460	41	Brasnorte	0,7617	76	Carlinda	0,8169	111	Torixoréu	0,8528
7	Nova Mutum	0,6461	42	Colíder	0,7632	77	Vale de São Dom	0,8171	112	Nova Guarita	0,8538
8	Rondonópolis	0,6603	43	Alto Araguaia	0,7650	78	Tesouro	0,8174	113	Lambari D'Oe	0,8555
9	Diamantino	0,6656	44	Marcelândia	0,7654	79	Chapada dos Guir	0,8188	114	Jauru	0,8561
10	Alta Floresta	0,6701	45	Tapurah	0,7662	80	Novo Santo Antô	0,8188	115	Porto Estrela	0,8593
11	Serra Nova Dourada	0,6847	46	Terra Nova do No	0,7677	81	Alto Taquari	0,8192	116	Pontal do Ara	0,8596
12	Primavera do Leste	0,6897	47	Rondolândia	0,7699	82	Matupá	0,8204	117	União do Sul	0,8626
13	Nova Ubiratã	0,6932	48	Guiratinga	0,7711	83	Jaciara	0,8207	118	Araputanga	0,8652
14	Cuiabá	0,6937	49	Novo São Joaquin	0,7738	84	Cláudia	0,8270	119	Acorizal	0,8656
15	Lucas do Rio Verde	0,7011	50	Santo Antônio do	0,7738	85	São José dos Quat	0,8273	120	Glória D'Oest	0,8656
16	Juara	0,7019	51	Peixoto de Azeve	0,7744	86	Curvelândia	0,8279	121	Salto do Céu	0,8659
17	Juína	0,7034	52	Nova Xavantina	0,7751	87	Castanheira	0,8291	122	Nova Brasilâr	0,8668
18	Vila Bela da Santíssima T	0,7051	53	Bom Jesus do Ara	0,7773	88	Porto Alegre do N	0,8293	123	Planalto da S	0,8689
19	Canarana	0,7061	54	Nova Canaã do No	0,7790	89	Nova Olímpia	0,8300	124	Jangada	0,8697
20	Tabaporã	0,7081	55	Rosário Oeste	0,7802	90	Cotriguaçu	0,8306	125	Alto Paragua	0,8702
21	Aripuanã	0,7239	56	Poconé	0,7824	91	Santa Carmem	0,8307	126	Figueirópolis	0,8722
22	l Ipiranga do Norte	0,7298	57	Gaúcha do Norte	0,7836	92	Vera	0,8311	127	Juruena	0,8735
23	Querência	0,7333	58	Comodoro	0,7847	93	Araguaiana	0,8317	128	Nova Marilâr	0,8770
24	Campos de Júlio	0,7369	59	Alto Garças	0,7890	94	Juscimeira	0,8319	129	Novo Horizon	0,8775
25	Colniza	0,7397	60	São Félix do Arago	0,7908	95	Campinápolis	0,8329	130	Santo Afonso	0,8791
26	Pedra Preta	0,7404	61	Barra do Garças	0,7910	96	Itaúba	0,8361	131	Luciara	0,8801
27	Pontes e Lacerda	0,7411	62	Nossa Senhora do	0,7983	97	Mirassol d'Oeste	0,8362	132	São Pedro da	0,8815
28	Confresa	0,7418	63	Nova Bandeirante	0,8022	98	General Carneiro	0,8370	133	Indiavaí	0,8841
29	Poxoréo	0,7426	64	Nova Santa Helen	0,8023	99	Nobres	0,8378	134	Reserva do C	0,8857
30	Tangará da Serra	0,7442	65	Porto dos Gaúcho	0,8030	100	Apiacás	0,8385	135	São José do F	0,8864
31	Cocalinho	0,7485	66	Ribeirão Cascalhe	0,8030	101	São José do Rio Cl	0,8390	136	Ponte Branca	0,8875
32	! Itanhangá	0,7493	67	Nova Maringá	0,8052	102	Canabrava do No	0,8393	137	Ribeirãozinh	0,8889
33	Guarantã do Norte	0,7500	68	São José do Xingu	0,8053	103	Novo Mundo	0,8409	138	Nortelândia	0,8894
34	Barra do Bugres	0,7506	69	Dom Aguino	0,8058	104	Barão de Melgaço	0,8416	139	Araguainha	0,8897
	Santo Antônio do Leste	0,7515		Santa Cruz do Xing			Santa Terezinha	0,8425		Rio Branco	0,8900
		.,			.,			.,		Arenápolis	0,8937

De acordo com a Tabela 17, para o ano de 2006 o IIFMP apresentou variação de 0,99 a 0,55 e os municípios de Campo Verde, Sorriso, Campo Novo do Parecis, Cáceres, Paranatinga, Itiquira, Nova Mutum, Rondonópolis, Diamantino, Alta Floresta, Serra Nova Dourada, Primavera do Leste, Nova Ubiratã e Cuiabá foram identificados com os piores resultados.

Índice Integrado de Força Motriz e Estado (IIFME) - obtido pela soma dos dois índices dividido por dois.

No ano de 1996 o IIFME apresentou variação entre 0,92 e 0,25 identificando os municípios de Campo Novo do Parecis e Primavera do Leste com os resultados mais baixos (Tabela 18). Em 2006, esse índice integrado variou entre 0,90 e 0,27 sendo que os municípios de Campo Novo do Parecis, Primavera do Leste, Campo Verde, Sapezal, Sorriso, Lucas do Rio Verde, Nova Mutum, Diamantino, Campos de Júlio e Itiquira apresentaram os piores resultados, conforme a Tabela 19.

Tabela 18 - Índice Integrado de Força Motriz e Estado. Mato Grosso, 1996.

Ordem	Municípios	IIFME	Ordem	Municípios	IIFME	Ordem	Municípios	IIFME	Ordem	Municípios	IIFME
1	Campo Novo do F	0,293771	31	Água Boa	0,940955	61	Nossa Senhora do Li	0,976351	91	Santa Terezinha	0,986759
2	Cuiabá	0,499348	32	Canarana	0,941127	62	Nobres	0,976381	92	Santo Afonso	0,986799
3	Primavera do Les	0,66371	33	Juína	0,941687	63	Cláudia	0,976689	93	Jangada	0,987124
4	Rondonópolis	0,706464	34	São José dos Qua	0,942099	64	Brasnorte	0,977224	94	Glória D'Oeste	0,987274
5	Diamantino	0,73021	35	Nova Xavantina	0,944403	65	Marcelândia	0,978603	95	Nova Monte Verd	0,987382
6	Sorriso	0,767391	36	Dom Aquino	0,944846	66	Alto Paraguai	0,979278	96	Nova Brasilândia	0,987811
7	Várzea Grande	0,782538	37	Guarantã do Nort	0,94787	67	Itaúba	0,979525	97	Canabrava do Nor	0,988396
8	Campo Verde	0,795274	38	Nova Olímpia	0,948574	68	Cocalinho	0,980042	98	Nova Guarita	0,989585
9	Itiquira	0,814758	39	Juara	0,949171	69	Salto do Céu	0,980288	99	Rio Branco	0,990074
10	Lucas do Rio Verd	0,830375	40	Paranatinga	0,949258	70	Lambari D'Oeste	0,98053	100	Apiacás	0,990646
11	Pedra Preta	0,843021	41	General Carneiro	0,951172	71	São Félix do Araguai	0,980911	101	São Pedro da Cipa	0,991505
12	Cáceres	0,867615	42	Vera	0,951401	72	Figueirópolis D'Oest	0,981358	102	Cotriguaçu	0,992555
13	Novo São Joaquir	0,868232	43	São José do Rio C	0,952833	73	Paranaíta	0,982454	103	Planalto da Serra	0,993103
14	Nova Mutum	0,871677	44	Araputanga	0,953631	74	Matupá	0,982479	104	Juruena	0,99315
15	Alta Floresta	0,879896	45	Denise	0,95797	75	Santa Carmem	0,982482	105	São José do Povo	0,993211
16	Tangará da Serra	0,883185	46	Confresa	0,958706	76	Porto Esperidião	0,982693	106	Tabaporã	0,993351
17	Pontes e Lacerda	0,894586	47	Mirassol d'Oeste	0,959155	77	Acorizal	0,983102	107	Alto Boa Vista	0,993381
18	Jaciara	0,899908	48	Juscimeira	0,959791	78	Querência	0,983457	108	Porto Estrela	0,99352
19	Comodoro	0,904083	49	Peixoto de Azeve	0,960437	79	Ribeirão Cascalheira	0,98353	109	Pontal do Araguai	0,993702
20	Alto Garças	0,913066	50	Terra Nova do No	0,964802	80	Porto Alegre do Nor	0,983595	110	Nova Marilândia	0,99383
21	Sinop	0,914798	51	Santo Antônio do	0,965946	81	Castanheira	0,983778	111	Novo Horizonte d	0,994665
22	Poxoréo	0,916635	52	São José do Xingi	0,969117	82	Arenápolis	0,984475	112	Araguaiana	0,994885
23	Aripuanã	0,932932	53	Jauru	0,969144	83	Porto dos Gaúchos	0,98484	113	Reserva do Cabaç	0,99698
24	Barra do Bugres	0,934349	54	Chapada dos Guir	0,9717	84	Tesouro	0,98528	114	Ponte Branca	0,997937
25	Guiratinga	0,935612	55	Alto Araguaia	0,972261	85	Indiavaí	0,985601	115	Ribeirãozinho	0,998288
26	Alto Taquari	0,935729	56	Vila Rica	0,973014	86	Nova Maringá	0,985991	116	Luciara	0,998472
27	Barra do Garças	0,936811	57	Rosário Oeste	0,973233	87	Nortelândia	0,986412	117	Araguainha	0,999973
28	Colíder	0,937879	58	Nova Canaã do N	0,974526	88	Torixoréu	0,986551			
29	Poconé	0,940278	59	Campinápolis	0,974741	89	Nova Bandeirantes	0,986701			
30	Vila Bela da Santí	0,940886	60	Tapurah	0,975245	90	Barão de Melgaço	0,986732			

Tabela 19 - Índice Integrado de Força Motriz e Estado. Mato Grosso, 2006.

Ordem	Municípios	IIFME	Ordem	Municípios	IIFME	Ordem	Municípios	IIFME	Ordem	Municípios	IIFME
1	Campo Novo do P	0,2777	36	Conquista D	0,8299	71	São José do Rio	0,8767	106	Indiavaí	0,8909
2	Primavera do Lest	0,4574	37	Curvelândia	0,8300	72	Gaúcha do Nort	0,8768	107	Nova Bande	0,891
3	Campo Verde	0,4758	38	Nova Nazaré	0,8302	73	Santa Carmem	0,8777	108	Araputanga	0,891
4	Sapezal	0,5814	39	Novo São Jo	0,8318	74	Colíder	0,8802	109	Nova Guarita	0,891
5	Sorriso	0,5908	40	Novo Santo	0,8322	75	Marcelândia	0,8802	110	Alto Boa Vis	0,8924
6	Lucas do Rio Verd	0,5975	41	Guiratinga	0,8400	76	Rosário Oeste	0,8825	111	Nobres	0,8925
7	Nova Mutum	0,6118	42	Jaciara	0,8401	77	Chapada dos Gu	0,8827	112	Campinápol	0,8926
8	Diamantino	0,6200	43	Cáceres	0,8419	78	Santo Antônio o	0,8829	113	Pontal do Ar	0,8933
9	Campos de Júlio	0,6662	44	Dom Aquino	0,8449	79	Poconé	0,8835	114	Acorizal	0,8934
10	Itiquira	0,6858	45	Alto Araguai	0,8495	80	Lambari D'Oest	0,8835	115	Porto Alegre	0,8936
11	Serra Nova Doura	0,7021	46	Comodoro	0,8524	81	Cláudia	0,8839	116	Glória D'Oes	0,8939
12	Rondonópolis	0,7139	47	Nova Xavant	0,8537	82	Nova Monte Ve	0,8840	117	Araguaiana	0,8950
13	Pedra Preta	0,7245	48	Barra do Bug	0,8539	83	Mirassol d'Oest	0,8841	118	Torixoréu	0,8950
14	Cuiabá	0,7373	49	Várzea Gran	0,8578	84	Itaúba	0,8842	119	Novo Horizo	0,895
15	Brasnorte	0,7521	50	Água Boa	0,8585	85	Paranaíta	0,8845	120	Juruena	0,895
16	Santo Antônio do	0,7549	51	General Carr	0,8605	86	Guarantã do No	0,8845	121	Figueirópoli	0,895
17	Santa Rita do Trive	0,7618	52	Nova Maring	0,8611	87	São José dos Qu	0,8855	122	Araguainha	0,8955
18	Querência	0,7623	53	Barra do Gar	0,8619	88	Castanheira	0,8856	123	Jauru	0,8956
19	Tabaporã	0,7703	54	Confresa	0,8623	89	Matupá	0,8859	124	Salto do Céu	0,8958
20	Nova Ubiratã	0,7712	55	Juína	0,8659	90	Denise	0,8859	125	São Félix do	0,8959
21	Tangará da Serra	0,7873	56	Pontes e Lac	0,8661	91	União do Sul	0,8861	126	Jangada	0,8960
22	Sinop	0,7910	57	Juara	0,8668	92	Feliz Natal	0,8868	127	Nova Marilâ	0,8962
23	Itanhangá	0,7912	58	Alta Floresta	0,8677	93	Novo Mundo	0,8874	128	Santo Afons	0,8963
24	Ipiranga do Norte	0,7917	59	Paranatinga	0,8681	94	Porto Esperidiã	0,8876	129	Alto Paragua	0,8965
25	Tapurah	0,8066	60	Vila Rica	0,8706	95	São Pedro da Ci	0,8879	130	Nossa Senho	0,8965
26	Colniza	0,8097	61	Vera	0,8713	96	Carlinda	0,8880	131	Ponte Branc	0,897
27	Alto Garças	0,8116	62	São José do	0,8715	97	Peixoto de Aze	0,8881	132	Porto Estrela	0,897
28	Bom Jesus do Arag	0,8164	63	Terra Nova c	0,8726	98	Cocalinho	0,8883	133	Ribeirãozinh	0,898
29	Rondolândia	0,8220	64	Juscimeira	0,8744	99	Ribeirão Cascall	0,8885	134	Planalto da S	0,899
30	Poxoréo	0,8257	65	Nova Canaã	0,8745	100	Cotriguaçu	0,8900	135	Reserva do 0	0,899
31	Alto Taquari	0,8263	66	Vila Bela da	0,8749	101	Nortelândia	0,8900	136	São José do	0,8996
32	Canarana	0,8265	67	Aripuanã	0,8756	102	Apiacás	0,8904	137	Nova Brasilâ	0,899
33	Vale de São Domi	0,8268	68	Nova Olímpi	0,8759	103	Nova Lacerda	0,8905	138	Barão de Me	0,9004
34	Nova Santa Helen			Porto dos Ga	0,8760	104	Canabrava do N		139	Luciara	0,901
35	Santa Cruz do Xin	0,8280	70	Tesouro	0,8761	105	Santa Terezinha		140	Rio Branco	0,9031
									1/11	Arenánolis	0 9038

Índice Integrado de Força Motriz, Pressão e Estado (IIFMPE) - obtido pelo resultado da soma dos três índices dividido por três.

Tabela 20 - Índice Integrado de Força Motriz, Pressão e Estado. Mato Grosso, 1996.

Ordem	Municípios	IIFMPE	Ordem	Municípios	IIFMPE	Ordem	Municípios	IIFMPE	Ordem	Municípios	IIFMPE
:	Campo Novo do Par	0,1958	31	Juscimeira	0,9389	61	São José do Xin	0,9791	91	Nova Brasilândia	0,9903
	2 Cuiabá	0,6659	32	Guiratinga	0,9426	62	Vila Rica	0,9797	92	Barão de Melgaço	0,9906
3	Primavera do Leste	0,6985	33	Água Boa	0,9469	63	Nova Canaã do	0,9812	93	Jangada	0,9907
4	Barra do Bugres	0,7156	34	Santo Afonso	0,9497	64	Rosário Oeste	0,9812	94	Nova Bandeirantes	0,9907
	Diamantino	0,7195	35	Canarana	0,9502	65	Campinápolis	0,9818	95	Torixoréu	0,9908
	Sorriso	0,7253	36	Aripuanã	0,9540	66	Nobres	0,9821	96	Santa Terezinha	0,9908
	7 Nova Olímpia	0,7407	37	Lambari D'Oeste	0,9548	67	Nossa Senhora	0,9831	97	Nova Monte Verde	0,9911
	B Denise	0,7647	38	General Carneiro	0,9564	68	Cláudia	0,9843	98	Canabrava do Norte	0,9916
	Rondonópolis	0,7702	39	Paranatinga	0,9569	69	Querência	0,9853	99	Planalto da Serra	0,9920
10	Campo Verde	0,7990	40	Colíder	0,9571	70	Marcelândia	0,9854	100	Nova Guarita	0,9924
1:	l Jaciara	0,8072	41	Barra do Garças	0,9573	71	Itaúba	0,9857	101	Nova Marilândia	0,9927
12	2 Itiquira	0,8153	42	Vila Bela da Sant	0,9581	72	Salto do Céu	0,9857	102	Apiacás	0,9931
13	Lucas do Rio Verde	0,8266	43	Juína	0,9592	73	Cocalinho	0,9859	103	Rio Branco	0,9931
14	Várzea Grande	0,8550	44	São José dos Qua	0,9597	74	Tesouro	0,9861	104	São José do Povo	0,9941
1!	Nova Mutum	0,8571	45	Nova Xavantina	0,9598	75	Figueirópolis D	0,9862	105	Cotriguaçu	0,9944
10	Pedra Preta	0,8650	46	Guarantã do Nor	0,9606	76	Santa Carmem	0,9865	106	Juruena	0,9952
1	7 Novo São Joaquim	0,8650	47	Vera	0,9611	77	São Félix do Ara	0,9869	107	Tabaporã	0,9952
18	3 Tangará da Serra	0,8656	48	Juara	0,9652	78	Matupá	0,9870	108	Alto Boa Vista	0,9953
19	Comodoro	0,8980	49	São Pedro da Cip	0,9676	79	Porto Esperidiã	0,9870	109	Porto Estrela	0,9954
20	Cáceres	0,9036	50	Araputanga	0,9676	80	Paranaíta	0,9871	110	Pontal do Araguaia	0,9958
2:	l Poconé	0,9108	51	Tapurah	0,9709	81	Porto Alegre do	0,9884	111	Novo Horizonte do	0,9961
2	Alta Floresta	0,9153	52	Mirassol d'Oeste	0,9717	82	Castanheira	0,9884	112	Araguaiana	0,9964
2	Alto Taquari	0,9182	53	Peixoto de Azev	0,9732	83	Ribeirão Cascal	0,9884	113	Reserva do Cabaçal	0,9978
24	São José do Rio Clar	0,9189	54	Alto Paraguai	0,9736	84	Acorizal	0,9885	114	Ribeirãozinho	0,9985
2!	Alto Garças	0,9192	55	Terra Nova do No	0,9740	85	Porto dos Gaúcl	0,9892	115	Ponte Branca	0,9986
20	Dom Aquino	0,9214	56	Santo Antônio d	0,9760	86	Arenápolis	0,9894	116	Luciara	0,9989
2	7 Poxoréo	0,9265	57	Brasnorte	0,9770	87	Nortelândia	0,9895	117	Araguainha	1,0000
28	Pontes e Lacerda	0,9273	58	Alto Araguaia	0,9773	88	Indiavaí	0,9900			
29	Sinop	0,9346	59	Chapada dos Gui	0,9776	89	Nova Maringá	0,9901			
30	Confresa	0,9356	60	Jauru	0,9786	90	Glória D'Oeste	0,9902			

Conforme observado na Tabela 20, o IIFMPE variou de 0,94 a 0,27 no ano de 1996, identificando Campo Novo do Parecis e Primavera do Leste como os municípios com piores resultados.

Em 2006 a variação do IIFMPE foi de 0,92 a 0,39 sendo que Campo Novo do Parecis, Campo Verde, Sorriso, Primavera do Leste, Nova Mutum, Sapezal, Lucas do Rio Verde, Diamantino e Itiquira apresentaram os piores resultados (Tabela 21).

Tabela 21 - Índice Integrado de Força Motriz, Pressão e Estado. Mato Grosso, 2006.

Ordem	Municípios	IIFMPE	Ordem	Municípios	IIFMPE	Ordem	Municípios	IIFMPE	Ordem	Municípios	IIFMPE
1	Campo Novo do	0,3975	36	Novo São Joac	0,8239	71	São José do Xingu	0,8690	106	Alto Boa Vista	0,8973
2	Campo Verde	0,5414	37	Água Boa	0,8247	72	General Carneiro	0,8691	107	Feliz Natal	0,8978
3	Sorriso	0,5461	38	Pontes e Lacei	0,8247	73	Santa Cruz do Xingi	0,8701	108	Nova Lacerda	0,8985
4	Primavera do Le	0,5652	39	Guiratinga	0,8255	74	Tesouro	0,8713	109	Denise	0,8994
5	Nova Mutum	0,6323	40	Confresa	0,8258	75	Paranaíta	0,8724	110	Várzea Grande	0,9006
6	Sapezal	0,6360	41	Colniza	0,8264	76	Nova Nazaré	0,8728	111	Torixoréu	0,9014
7	Lucas do Rio Ver	0,6502	42	Barra do Bugre	0,8264	77	Conquista D'Oeste	0,8730	112	Nova Guarita	0,9023
8	Diamantino	0,6526	43	Nova Xavantir	0,8299	78	Nova Monte Verde	0,8736	113	Lambari D'Oest	0,9023
9	Itiquira	0,6817	44	Cocalinho	0,8321	79	Porto Esperidião	0,8739	114	Jauru	0,9040
10	Rondonópolis	0,7233	45	Guarantã do N	0,8331	80	Vera	0,8754	115	Porto Estrela	0,9060
11	Campos de Júlio	0,7273	46	Comodoro	0,8377	81	Chapada dos Guima	0,8755	116	Pontal do Arag	0,9064
12	Nova Ubiratã	0,7420	47	Alto Araguaia	0,8385	82	São José do Rio Cla	0,8763	117	União do Sul	0,9074
13	Cáceres	0,7421	48	Vila Rica	0,8405	83	Carlinda	0,8768	118	Araputanga	0,9094
14	Querência	0,7521	49	Colíder	0,8415	84	Vale de São Domin	0,8780	119	Nova Brasilând	0,9100
15	Pedra Preta	0,7525	50	Marcelândia	0,8431	85	Juscimeira	0,8790	120	Glória D'Oeste	0,9103
16	Paranatinga	0,7549	51	Terra Nova do	0,8449	86	Novo Santo Antônio	0,8791	121	Acorizal	0,9104
17	Brasnorte	0,7668	52	Rondolândia	0,8466	87	Matupá	0,8797	122	Salto do Céu	0,9105
18	Canarana	0,7699	53	Bom Jesus do	0,8468	88	Santa Carmem	0,8804	123	Alto Paraguai	0,9116
19	Tangará da Serra	0,7769	54	Santo Antônio	0,8470	89	510623 Nova Olímpi	0,8817	124	Planalto da Ser	0,9126
20	Alta Floresta	0,7780	55	Nova Canaã do	0,8473	90	Cláudia	0,8819	125	Jangada	0,9129
21	Sinop	0,7807	56	Barra do Garça	0,8488	91	São José dos Quatr	0,8822	126	Figueirópolis D	0,9142
22	Serra Nova Doura	0,7898	57	Peixoto de Az	0,8495	92	Porto Alegre do No	0,8851	127	Juruena	0,9145
23	Tabaporã	0,7940	58	Gaúcha do No	0,8499	93	Curvelândia	0,8851	128	Nova Marilând	0,9173
24	Cuiabá	0,7955	59	Rosário Oeste	0,8529	94	Castanheira	0,8856	129	Nortelândia	0,9183
25	Vila Bela da Sant	0,7980	60	Poconé	0,8549	95	Itaúba	0,8862	130	Novo Horizonto	0,9183
26	Juara	0,8002	61	Dom Aquino	0,8564	96	Cotriguaçu	0,8870	131	Santo Afonso	0,9193
27	Juína	0,8010	62	Nova Maringá	0,8575	97	Araguaiana	0,8878	132	Luciara	0,9201
28	Poxoréo	0,8025	63	São Félix do Ar	0,8599	98	Campinápolis	0,8884	133	São Pedro da C	0,9209
29	Santo Antônio d	0,8050	64	Alto Taquari	0,8609	99	Mirassol d'Oeste	0,8903	134	Indiavaí	0,9227
30	Santa Rita do Tri	0,8073	65	Jaciara	0,8627	100	Nobres	0,8909	135	Reserva do Cab	0,9238
31	Ipiranga do Nort	0,8105	66	Porto dos Gaú	0,8637	101	Apiacás	0,8917	136	São José do Po	0,9242
32	Itanhangá	0,8116	67	Nossa Senhora	0,8655	102	Canabrava do Nort	0,8921	137	Ponte Branca	0,9250
33	Aripuanã	0,8153	68	Ribeirão Casca	0,8669	103	Santa Terezinha	0,8925	138	Ribeirãozinho	0,9257
34	Tapurah	0,8182	69	Nova Santa He	0,8676	104	Novo Mundo	0,8938	139	Araguainha	0,9263
35	Alto Garças	0,8233	70	Nova Bandeira	0,8678	105	Barão de Melgaço	0,8944	140	Rio Branco	0,9264
	·								141	Arenápolis	0,9289

Indicadores Integrados de Saúde Ambiental para o Câncer:

Em razão da seleção dos indicadores de efeito a saúde serem óbitos por câncer na População Geral e na População Infanto-juvenil, foram propostos dois índices integrados de Saúde Ambiental.

Indicadores Integrados de Saúde Ambiente para Óbitos por Câncer na População Geral (ISACPG) - obtidos pela soma entre o IIFMPE e o índice de efeito na População Geral dividido por dois.

Esse índice variou de 0,97 a 0,40 no ano de 1996 sendo que os municípios de Cuiabá e Campo Novo do Parecis tiveram os piores resultados (Tabela 22). Na Tabela 23, observa-se que em 2006 a variação foi de 0,96 a 0,39 com Cuiabá, Campo Novo do Parecis e Rondonópolis identificados com os piores resultados.

Tabela 22 - Índice Integrado de Saúde Ambiente para Câncer População Geral. Mato Grosso, 1996.

Ordem	Municípios	IISACaPG	Ordem	Municípios	IISACaPG	Ordem	Municípios	IISACaPG	Ordem	Municípios	IISACaPG
1	Cuiabá	0,3330	31	São José do Rio Claro	0,9555	61	Brasnorte	0,9846	91	Torixoréu	0,9934
2	Campo Novo do Parecis	0,5921	32	Juína	0,9564	62	Alto Paraguai	0,9849	92	Santa Terezir	0,9935
3	Rondonópolis	0,7204	33	Colíder	0,9572	63	Jauru	0,9854	93	Juruena	0,9937
4	Várzea Grande	0,7879	34	Alto Taquari	0,9591	64	Tapurah	0,9855	94	Pontal do Ara	0,9940
5	Primavera do Leste	0,8338	35	São José dos Quatro Mar	0,9605	65	Paranaíta	0,9858	95	Porto Alegre	0,9942
6	Sorriso	0,8452	36	Dom Aquino	0,9607	66	Rosário Oeste	0,9867	96	Ribeirão Caso	0,9942
7	Diamantino	0,8481	37	Nova Xavantina	0,9624	67	Figueirópolis D'O	0,9873	97	Acorizal	0,9942
8	Barra do Bugres	0,8559	38	Juscimeira	0,9637	68	São José do Xing	0,9876	98	Apiacás	0,9946
9	Nova Olímpia	0,8645	39	Mirassol d'Oeste	0,9645	69	Matupá	0,9877	99	Indiavaí	0,9950
10	Denise	0,8785	40	Confresa	0,9658	70	Porto Esperidião	0,9877	100	Nova Maring	0,9950
11	Jaciara	0,8842	41	Guarantã do Norte	0,9687	71	Marcelândia	0,9888	101	Glória D'Oest	0,9951
12	Cáceres	0,8898	42	Santo Afonso	0,9729	72	Nortelândia	0,9890	102	Nova Monte	0,9955
13	Campo Verde	0,8937	43	Peixoto de Azevedo	0,9730	73	Salto do Céu	0,9890	103	Tabaporã	0,9957
14	Lucas do Rio Verde	0,9017	44	Aripuanã	0,9731	74	Nobres	0,9891	104	Canabrava do	0,9958
15	Itiquira	0,9019	45	Canarana	0,9732	75	Nova Guarita	0,9904	105	Planalto da S	0,9960
16	Tangará da Serra	0,9076	46	Vila Rica	0,9744	76	Campinápolis	0,9909	106	Novo Horizon	r 0,9961
17	Pedra Preta	0,9150	47	Paranatinga	0,9746	77	Tesouro	0,9911	107	Nova Marilâr	0,9964
18	Pontes e Lacerda	0,9152	48	Vera	0,9747	78	Nova Brasilândia	0,9913	108	Reserva do C	0,9970
19	Nova Mutum	0,9208	49	Vila Bela da Santíssima T	0,9752	79	São Félix do Arag	0,9915	109	São José do F	0,9971
20	Novo São Joaquim	0,9286	50	Lambari D'Oeste	0,9755	80	Nossa Senhora d	0,9916	110	Cotriguaçu	0,9972
21	Sinop	0,9324	51	General Carneiro	0,9763	81	Castanheira	0,9923	111	Alto Boa Vist	0,9976
22	Alta Floresta	0,9363	52	Araputanga	0,9780	82	Querência	0,9926	112	Porto Estrela	0,9977
23	Comodoro	0,9393	53	Alto Araguaia	0,9790	83	Porto dos Gaúch	0,9926	113	Araguaiana	0,9982
24	Poconé	0,9419	54	São Pedro da Cipa	0,9799	84	Rio Branco	0,9927	114	Ribeirãozinh	0,9992
25	Poxoréo	0,9419	55	Santo Antônio do Leverg	0,9803	85	Itaúba	0,9928	115	Ponte Branca	0,9993
26	Alto Garças	0,9441	56	Nova Canaã do Norte	0,9828	86	Cocalinho	0,9930	116	Luciara	0,9994
27	Barra do Garças	0,9476	57	Chapada dos Guimarães	0,9830	87	Santa Carmem	0,9933	117	Araguainha	1,0000
28	Juara	0,9497	58	Arenápolis	0,9831	88	Barão de Melgaç	0,9934			
29	Guiratinga	0,9538	59	Terra Nova do Norte	0,9831	89	Jangada	0,9934			
	Água Boa	0,9541	60	Cláudia	0,9844	90	Nova Bandeirant	0,9934			

Tabela 23 - Índice Integrado de Saúde Ambiente para Câncer População Geral. Mato Grosso, 2006.

Ordem	Municípios	IISACaPG	Ordem	Municípios	IISACaPG	Ordem	Municípios	IISACaPG	Ordem	Municípios	IISACaPG
1	Cuiabá	0,3978	36	Santo Antônio do	0,9012	71	Nova Maring	0,9274	106	Apiacás	0,9432
2	Campo Novo do I	0,6907	37	Água Boa	0,9016	72	Nova Bandei	0,9285	107	Feliz Natal	0,9435
3	Rondonópolis	0,6981	38	Guarantã do Norte	0,9018	73	Alto Taquari	0,9291	108	Denise	0,9443
4	Várzea Grande	0,7331	39	Poconé	0,9033	74	Vera	0,9297	109	Canabrava d	0,9447
5	Sorriso	0,7462	40	Alto Garças	0,9036	75	Juscimeira	0,9301	110	Novo Mundo	0,9456
6	Primavera do Les	0,7464	41	Santa Rita do Triv	0,9037	76	Nova Olímpi	0,9301	111	Nova Brasilâ	0,9456
7	Campo Verde	0,7493	42	Ipiranga do Norte	0,9039	77	General Carr	0,9305	112	Alto Boa Vis	0,9459
8	Cáceres	0,7933	43	Comodoro	0,9041	78	Nobres	0,9307	113	Nova Lacerd	0,9466
9	Sinop	0,7965	44	Nova Xavantina	0,9042	79	Ribeirão Cas	0,9308	114	Jauru	0,9466
10	Nova Mutum	0,8068	45	Itanhangá	0,9045	80	Paranaíta	0,9322	115	Torixoréu	0,9467
11	Lucas do Rio Verd	0,8103	46	Peixoto de Azeve	0,9047	81	Nova Santa F	0,9325	116	Porto Estrela	0,9490
12	Sapezal	0,8140	47	Confresa	0,9048	82	Nova Monte	0,9328	117	Lambari D'O	0,9498
13	Diamantino	0,8156	48	Alto Araguaia	0,9059	83	São José do I	0,9328	118	Jangada	0,9511
14	Itiquira	0,8328	49	Santo Antônio do	0,9061	84	Porto Esperio	0,9330	119	Glória D'Oes	0,9511
15	Alta Floresta	0,8381	50	Colíder	0,9073	85	São José do X	0,9332	120	Acorizal	0,9512
16	Tangará da Serra	0,8415	51	Tapurah	0,9078	86	Matupá	0,9332	121	Alto Paragua	0,9518
17	Paranatinga	0,8573	52	Nova Canaã do No	0,9089	87	Castanheira	0,9334	122	Pontal do Ar	0,9518
18	Pedra Preta	0,8575	53	Novo São Joaquin	0,9106	88	Carlinda	0,9344	123	Planalto da S	0,9523
19	Campos de Júlio	0,8623	54	Jaciara	0,9112	89	Porto Alegre	0,9345	124	União do Sul	0,9524
20	Juína	0,8683	55	Marcelândia	0,9122	90	Santa Cruz de	0,9351	125	Salto do Céu	0,9526
21	Nova Ubiratã	0,8696	56	Rosário Oeste	0,9130	91	Nova Nazaré	0,9351	126	Juruena	0,9546
22	Canarana	0,8702	57	Terra Nova do No	0,9131	92	Conquista D'	0,9352	127	Nortelândia	0,9551
23	Querência	0,8734	58	Cocalinho	0,9133	93	Cláudia	0,9369	128	Reserva do O	0,9552
24	Pontes e Lacerda	0,8748	59	Chapada dos Guir	0,9136	94	Santa Carme	0,9375	129	São José do	0,9554
25	Barra do Garças	0,8761	60	Dom Aquino	0,9175	95	Vale de São I	0,9377	130	Figueirópoli	0,9558
26	Juara	0,8773	61	Vila Rica	0,9176	96	Novo Santo A	0,9382	131	Novo Horizo	0,9565
27	Poxoréo	0,8785	62	São José dos Qua	0,9183	97	Cotriguaçu	0,9395	132	Santo Afonso	0,9570
28	Brasnorte	0,8807	63	Mirassol d'Oeste	0,9210	98	Curvelândia	0,9399	133	São Pedro da	0,9578
29	Barra do Bugres	0,8904	64	Rondolândia	0,9220	99	Itaúba	0,9404	134	Arenápolis	0,9578
30	Tabaporã	0,8916	65	Nossa Senhora do	0,9234	100	Nova Guarita	0,9404	135	Nova Marilâ	0,9586
31	Serra Nova Doura	0,8949	66	Bom Jesus do Ara	0,9234	101	Barão de Mel	0,9405	136	Indiavaí	0,9587
32	Vila Bela da Sant	0,8963	67	Gaúcha do Norte	0,9236	102	Santa Terezii	0,9422	137	Luciara	0,9587
33	Guiratinga	0,8967	68	São Félix do Arag	0,9246	103	Araguaiana	0,9426	138	Ponte Branc	0,9598
34	Aripuanã	0,8996	69	Porto dos Gaúcho	0,9252	104	Araputanga	0,9426	139	Rio Branco	0,9605
35	Colniza	0,8998	70	Tesouro	0,9263	105	Campinápoli	0,9429	140	Ribeirãozinh	0,9628
									141	Araguainha	0,9631

Indicadores Integrados de Saúde Ambiente para Óbitos por Câncer na População Infanto-juvenil (ISACPIJ)) - obtidos pela soma entre o IIFMPE e o índice de efeito na População Infanto-juvenil dividido por dois.

A variação desse índice em 1996 esteve entre 0,97 e 0,40 sendo que Cuiabá e Campo Novo do Parecis apresentaram os piores resultados (Tabela 24).

Tabela 24 - Índice Integrado de Saúde Ambiente para Câncer Infanto-juvenil (IJ). Mato Grosso, 1996.

Ordem	Municípios	IISACalJ	Ordem	Municípios	IISACalJ	Ordem	Municípios	IISACalJ	Ordem	Municípios	IISACalJ
1	Cuiabá	0,3330	31	São José do Rio Claro	0,9594	61	Mirassol d'Oeste	0,9858	91	Glória D'Oeste	0,9951
2	Campo Novo do Parecis	0,5979	32	Alto Garças	0,9596	62	Alto Paraguai	0,9868	92	Nova Brasilândia	0,9951
3	Rondonópolis	0,7851	33	Dom Aquino	0,9607	63	Terra Nova do Norte	0,9870	93	Barão de Melgaço	0,9953
4	Primavera do Leste	0,8493	34	Poxoréo	0,9633	64	Santo Antônio do Le	0,9880	94	Jangada	0,9954
5	Várzea Grande	0,8525	35	Brasnorte	0,9635	65	Alto Araguaia	0,9887	95	Nova Bandeirantes	0,9954
6	Barra do Bugres	0,8578	36	Pontes e Lacerda	0,9637	66	Chapada dos Guimar	0,9888	96	Torixoréu	0,9954
7	Diamantino	0,8597	37	Rosário Oeste	0,9656	67	Jauru	0,9893	97	Santa Terezinha	0,9954
8	Sorriso	0,8626	38	Cláudia	0,9671	68	São José do Xingu	0,9896	98	Nova Monte Verde	0,9955
g	Nova Olímpia	0,8703	39	Sinop	0,9673	69	Vila Rica	0,9899	99	Canabrava do Norte	0,9958
10	Denise	0,8823	40	Marcelândia	0,9677	70	Nova Canaã do Norte	0,9906	100	Planalto da Serra	0,9960
11	Campo Verde	0,8995	41	Confresa	0,9678	71	Campinápolis	0,9909	101	Nova Guarita	0,9962
12	Jaciara	0,9036	42	Figueirópolis D'Oeste	0,9681	72	Nobres	0,9911	102	Nova Marilândia	0,9964
13	Itiquira	0,9077	43	Matupá	0,9685	73	Nossa Senhora do Liv	0,9916	103	Apiacás	0,9965
14	Lucas do Rio Verde	0,9133	44	Paranaíta	0,9686	74	Querência	0,9926	104	Rio Branco	0,9966
15	Comodoro	0,9240	45	Guiratinga	0,9713	75	Itaúba	0,9928	105	São José do Povo	0,9971
16	Cáceres	0,9268	46	Tabaporã	0,9726	76	Salto do Céu	0,9928	106	Cotriguaçu	0,9972
17	Nova Mutum	0,9286	47	Água Boa	0,9734	77	Cocalinho	0,9930	107	Juruena	0,9976
18	Poconé	0,9304	48	Santo Afonso	0,9749	78	Tesouro	0,9930	108	Alto Boa Vista	0,9976
19	Pedra Preta	0,9325	49	Canarana	0,9751	79	Santa Carmem	0,9933	109	Porto Estrela	0,9977
20	Novo São Joaquim	0,9325	50	Lambari D'Oeste	0,9774	80	São Félix do Araguai	0,9934	110	Pontal do Araguaia	0,9979
21	Tangará da Serra	0,9328	51	General Carneiro	0,9782	81	Porto Esperidião	0,9935	111	Novo Horizonte do N	0,9980
22	Peixoto de Azevedo	0,9366	52	Colíder	0,9785	82	Porto Alegre do Nor	0,9942	112	Araguaiana	0,9982
23	Juscimeira	0,9445	53	Barra do Garças	0,9786	83	Castanheira	0,9942	113	Reserva do Cabaçal	0,9989
24	Aripuanã	0,9520	54	Juína	0,9796	84	Ribeirão Cascalheira	0,9942	114	Ribeirãozinho	0,9992
25	Paranatinga	0,9534	55	São José dos Quatro Marc	0,9798	85	Acorizal	0,9942	115	Ponte Branca	0,9993
26	Vila Bela da Santíssima	0,9540	56	Nova Xavantina	0,9799	86	Porto dos Gaúchos	0,9946	116	Luciara	0,9994
27	Vera	0,9555	57	Guarantã do Norte	0,9803	87	Arenápolis	0,9947	117	Araguainha	1,0000
28	Alta Floresta	0,9577	58	Juara	0,9826	88	Nortelândia	0,9948			
29	Araputanga	0,9588	59	São Pedro da Cipa	0,9838	89	Indiavaí	0,9950			
30	Alto Taguari	0,9591	60	Tapurah	0,9855	90	Nova Maringá	0,9950			

Na Tabela 25 observou-se que o ISACPIJ variou entre 0,94 e 0,68 e novamente o município de Campo Novo do Parecis apresentou o resultado mais baixo.

Tabela 25 - Índice Integrado de Saúde Ambiente para Câncer Infanto-juvenil (IJ). Mato Grosso, 2006.

Ordem	Municípios	IISACaIJ	Ordem	Municípios	IISACaIJ	Ordem	Municípios	IISACalJ	Ordem	Municípios	IISACalJ
1	Campo Novo do	0,6813	36	Alto Garças	0,8950	71	Porto Esperio	0,9191	106	Nova Santa	0,9338
2	Campo Verde	0,7528	37	Confresa	0,8954	72	Paranaíta	0,9191	107	Jauru	0,9341
3	Sorriso	0,7551	38	Nova Xavantin	0,8970	73	Chapada dos	0,9194	108	Nova Guari	0,9349
4	Primavera do Les	0,7651	39	Cocalinho	0,8989	74	São José do R	0,9194	109	Santa Cruz	0,9351
5	Nova Mutum	0,7987	40	Guarantã do N	0,8995	75	Nova Monte	0,9202	110	Porto Estre	0,9355
6	Sapezal	0,8005	41	Alto Araguaia	0,9014	76	Vera	0,9202	111	Araputanga	0,9364
7	Diamantino	0,8071	42	Comodoro	0,9018	77	Juscimeira	0,9212	112	Nova Nazar	0,9364
8	Lucas do Rio Verd	0,8072	43	Santo Antônio	0,9025	78	Carlinda	0,9213	113	Conquista [0,9365
9	Itiquira	0,8229	44	Vila Rica	0,9028	79	Matupá	0,9215	114	Nova Brasil	0,9367
10	Rondonópolis	0,8421	45	Santa Rita do 1	0,9037	80	Nova Olímpia	0,9230	115	Pontal do A	0,9369
11	Campos de Júlio	0,8511	46	Colíder	0,9037	81	São José dos	0,9232	116	Alto Paragu	0,9375
12	Cáceres	0,8519	47	Santo Antônio	0,9039	82	Rondolândia	0,9233	117	Acorizal	0,9381
13	Nova Ubiratã	0,8556	48	Marcelândia	0,9049	83	Bom Jesus do	0,9234	118	Salto do Cé	0,9381
14	Pedra Preta	0,8587	49	Terra Nova do	0,9050	84	Santa Carmer	0,9244	119	União do Su	0,9383
15	Querência	0,8590	50	Ipiranga do No	0,9052	85	Cláudia	0,9247	120	Jangada	0,9386
16	Paranatinga	0,8604	51	Barra do Garça	0,9052	86	Porto Alegre	0,9250	121	Planalto da	0,9388
17	Brasnorte	0,8663	52	Itanhangá	0,9058	87	Mirassol d'O	0,9260	122	Glória D'Oe	0,9389
18	Canarana	0,8670	53	Peixoto de Az	0,9068	88	Itaúba	0,9260	123	Vale de São	0,9390
19	Tangará da Serra	0,8701	54	Nova Canaã do	0,9074	89	Castanheira	0,9261	124	Juruena	0,9393
20	Alta Floresta	0,8707	55	Poconé	0,9083	90	Campinápolis	0,9263	125	Novo Santo	0,9395
21	Sinop	0,8724	56	Rosário Oeste	0,9085	91	Araguaiana	0,9264	126	Figueirópol	0,9400
22	Cuiabá	0,8778	57	Gaúcha do No	0,9087	92	Cotriguaçu	0,9264	127	Nortelândia	0,9408
23	Tabaporã	0,8807	58	Dom Aquino	0,9103	93	Nobres	0,9267	128	Nova Marila	0,9411
24	Vila Bela da Sant	0,8811	59	São Félix do A	0,9112	94	Barão de Mel	0,9284	129	Novo Horizo	0,9425
25	Juara	0,8826	60	Nova Maringá	0,9121	95	Canabrava do	0,9286	130	Luciara	0,9425
26	Juína	0,8830	61	Jaciara	0,9126	96	Santa Terezir	0,9287	131	Santo Afons	0,9426
27	Poxoréo	0,8838	62	Colniza	0,9132	97	Apiacás	0,9288	132	Curvelândia	0,9426
28	Aripuanã	0,8906	63	Nossa Senhora	0,9140	98	Novo Mundo	0,9302	133	São Pedro o	0,9438
29	Tapurah	0,8924	64	Alto Taquari	0,9146	99	Várzea Grand	0,9311	134	Reserva do	0,9448
30	Água Boa	0,8940	65	Porto dos Gaú	0,9148	100	Denise	0,9318	135	Rio Branco	0,9449
31	-	0,8944	66	Ribeirão Casca	0,9164	101	Alto Boa Vist	0,9320	136	São José do	0,9454
32	Pontes e Lacerda	0,8945	67	Nova Bandeira	0,9168	102	Feliz Natal	0,9322	137	Indiavaí	0,9455
33	Barra do Bugres	0,8945	68	São José do Xi	0,9170	103	Nova Lacerda	0,9330	138	Arenápolis	0,9457
34	Guiratinga	0,8949	69	General Carne	0,9171	104	Torixoréu	0,9332	139	Ribeirãozin	0,9458
35	Serra Nova Doura	0,8949	70	Tesouro	0,9190	105	Lambari D'Oe	0,9336	140	Ponte Bran	0,9458
									141	Araguainha	0,9473

A modelagem construída ao final dos resultados da investigação possibilitou a compreensão sistêmica dos elementos envolvidos com mortalidade por câncer no estado, contemplando os diversos condicionantes selecionados, especialmente no que se refere ao ambiente e os processos produtivos.

Observa-se na Tabela 26 que o modelo foi explicativo para os indicadores de óbitos por câncer na população geral e óbitos por câncer na população infanto-juvenil com um coeficiente de determinação de 96% e 97% (1996) e de 99% e 62% (2006) respectivamente.

Tabela 26 - Regressão Múltipla dos óbitos por Câncer na População Geral (PG) e na População Infanto-juvenil (PIJ) por Municípios do Estado de Mato Grosso, 1996 e 2006.

Variáveis	Óbitos por Câncer na PG (1996)	Óbitos por Câncer na PIJ (1996)	Óbitos por Câncer na PG (2006)	Óbitos por Câncer na PIJ (2006)
	β(valor de p)	β(valor de p)	β(valor de p)	β(valor de p)
Υ ²	0,965	0,977	0,990	0,624
Constante	0,086 (0,001)	1,022(0,000)	0,048 (0,000)	0,967 (0,000)
Força Motriz	0,017 (0,362)	0,098 (0,000)	0,015 (0,276)	0,128 (0,000)
Pressão	0,073 (0,000)	0,012 (0,000)	0,017 (0,069)	0,025 (0,000)
Estado	0,034 (0,070)	0,014 (0,000)	0,028 (0,000)	0,029 (0,000)
Exposição	0,945 (0,000)	0,001 (0,540)	0,985 (0,000)	0,049 (0,000)

No ano de 1996, apenas o índice de Força não foi estatisticamente significante para os óbitos por câncer na população geral, enquanto que para os óbitos por câncer na população infanto-juvenil somente o Índice de Exposição não foi significante.

No ano de 2006, para os óbitos por câncer na população geral o índice de Força não foi estatisticamente significante entretanto, observaram-se resultados estatisticamente significantes da associação de todos os índices com os óbitos por câncer na população infanto-juvenil.

Vale ressaltar que o presente estudo é essencialmente um exercício metodológico, que apresenta em seus resultados uma orientação para sua aplicação prática.

Os resultados observados com a construção dos indicadores integrados possibilitaram a identificação dos municípios do estado nos quais ações que alterem o padrão dos componentes de Força Motriz, Pressão ou Estado poderão ter maior efeito na saúde da população. Além disso, os resultados mostraram, de forma hierárquica, a relevância de cada componente da cadeia FPEEEA proposta para essa dissertação.

Diferenciaram-se da interpretação isolada dos indicadores clássicos de saúde (epidemiológicos) e de ambiente (sanitários), por considerar alguns de seus determinantes na composição dos indicadores, por meio dos diferentes componentes da cadeia. Possibilitaram, também, uma leitura objetiva das condições de saúde e ambiente dependente da unidade espacial proposta para análise, com classificação segundo níveis de prioridade de atuação.

Ao final, poderão legitimar ação preventiva implicando em mudanças nos processos produtivos, nos investimentos e no modelo de crescimento para o controle da ação antrópica sobre o ambiente.

CONSIDERAÇÕES FINAIS

"Essa é a simples razão pela qual toda reprodução é uma nova produção; cada singular é diferente de qualquer outro singular, ainda que "represente" um mesmo tipo. Cada reprodução vai colocando – lenta, mas inexoravelmente- as bases da transformação daquilo que reproduz" (SAMAJA, 2000 p 73).

CONSIDERAÇÕES FINAIS

No período estudado, o estado de Mato Grosso sofreu importantes transformações socioeconômico-ambientais, em paralelo às mutações ocorridas na agricultura nacional. Ocorreram transformações nas relações técnicas, econômicas e no ordenamento das forças produtivas internas, em função das relações nucleadas no setor primário, definindo a modernização da agricultura (OLIVEIRA, 2005).

O processo de produção do setor agrícola tem como uma de suas principais marcas, uma expressiva dependência das tecnologias químicas. Tal dependência remonta às décadas de 60 e 70 do século passado, a partir da chamada "revolução verde". Ao considerar-se o período entre 1970 e 2006, sendo os últimos 10 anos relacionados ao diagnóstico e óbitos por câncer, obtém-se um rastro, de no mínimo 36 anos de uso intensivo de agrotóxicos no estado de Mato Grosso.

Em relação aos produtos químicos utilizados, observou-se exposição a vários tipos de agrotóxicos, com destaque para aqueles que são comprovadamente cancerígenos (48,91%), possivelmente cancerígenos (23,64%), não comprovadamente cancerígenos (11,95%), Mutagênicos(7,08%)

Foram observadas no estudo ecológico, associações positivas, com significância estatística, entre casos novos de câncer (p =0,021) e óbitos por câncer (p=0,005) na população menor de 20 anos e exposições aos agrotóxicos com IC de 95%.

Os estudos geralmente apontam a necessidade de novas pesquisas e de suporte financeiro para sua realização. Isso tem relevância na área da ciência e também no contexto histórico-social com repercussões políticas, pois atividades antrópicas, como atividades econômicas, impulsionadas pelo modelo de crescimento podem vir a constituir determinantes que atuam sobre o ecossistema, sendo capazes

de gerar efeitos ambientais com resultados adversos a saúde da população. Portanto, é necessário o entendimento da complexa relação decorrente do modelo de desenvolvimento humano e econômico implantado no estado, ou seja, o resultado histórico dos arranjos sociopolíticos, econômicos e institucionais que instrumentam a exploração dos serviços dos ecossistemas e a distribuição social dos seus benefícios.

Embora outros estudos sejam necessários, todos estes dados indicam a existência de importantes danos à saúde dos mato-grossenses como consequência de fatores socioeconômico-ambientais e especialmente a exposição aos agrotóxicos, e que estão se manifestando através de quadros de morbimortalidade por câncer.

A utilização da metodologia combinada por níveis de complexidade evidenciou que o crescimento econômico e processos de produção agrícola – produzem e reproduzem riscos e efeitos diferenciados relacionados ao câncer.

O reconhecimento do Câncer com base na compreensão da complexidade das interações entre as condições do ambiente, dos seres vivos e das formas de organização das sociedades traz outra perspectiva para o seu controle. Portanto, as intervenções sobre essa doença não devem se restringir a uma parte do problema - o tratamento -, mas atuar sobre a globalidade dos fatores determinantes quando isso for possível.

REFERÊNCIAS

Abreu AA de. Dicionário histórico biográfico brasileiro. São Paulo: CPDOC-Fundação Getulio Vargas, 2001.

Acquavella J, Olsen G, Cole P, Ireland B, Kaneene J, Schuman S, Holden L. Cancer among farmers: a meta-analysis. Annals of Epidemiology. 1998; v. 8, n. 1, 64-74.

Agência Nacional de Vigilância Sanitária - ANVISA, Programa Análise de Resíduos de Agrotóxicos em Alimentos. Relatório Anual 4/06/2001 – 30/06/2002. Brasília, 2002.

Alavanja MC et al. Use of Agricultural Pesticides and Prostate Cancer Risk in the Agricultural Health Study Cohort. American Journal of Epidemiology, Baltimore, v. 157, n. 9, p. 800-814, 2003.

Alguacil J, et al. 2000. Risk of pancreatic cancer and occupational exposures in Spain. Ann Occ Hyg 44(5): 391-403.

Ames BN, Gold LS. Carcinogenesis Debate. Science, 1990 14;250(4987):1498 -9.

Ames BN, Profet M, Gold Ls. Dietary Peticides (99,99% All Natural). Proc Natl. Acad. Sci.U.S.A- 1990- 87:7777-7781.

Barbosa Ferreira IC. Expansão da fronteira agrícola e urbanização. In: A urbanização da fronteira. Rio de Janeiro: PUBLIPUR/UFRJ, 1988.

Barros JRM, Manoel A. Insumos agrícolas: evolução recente e perspectivas. In: Brandão ASP. Os principais problemas da agricultura brasileira: análise e sugestões. Rio de Janeiro: IPEA/INPES, 1988. (Série PNPE).

Becker BK. Geopolítica da Amazônia: A Nova Fronteira de Recursos.Rio de Janeiro: Zahar Editores, 1982. p 233.

Becker BK. Geopolítica da Amazônia, São Paulo:Garamond: 2006.

Bellen HM. Indicadores de sustentabilidade: uma análise comparativa. Rio de Janeiro: Editora FGV, 2007.

Blair A, Zahm S, Pearce N, Heineman E, Fraumeni JJ. Clues to cancer etiology from studies of farmers. Scandinavian Journal of Work, Environmental & Health. 1992; v. 18, n. 4, 209-215.

Blair A, Zahm S. Agricultural exposures and cancer. Environmental Health Perspectives. 1995; 103, supl. 8,205-208.

Blair A, Sandler DP, Tarone R, Lubin J, Thomas K, Hoppin JA, Samanic C, et al. Mortality among participants in the agricultural health study. Annals of Epidemiology. 2005; v. 15, n. 4, 279-285.

Bonner MR. et al. Occupational exposure to carbofuran and the incidence of cancer in the Agricultural Health Study. Environmental Health Perspectives, Carolina do Norte, 2005. v.113, p. 285-289..

Braga PA, Latorre MRDO, Curado MP. Câncer na infância: análise comparativa da incidência, mortalidade e sobrevida em Goiânia (Brasil) e outros países. Cad. Saúde Pública. 2002 Jan-Fev; 18(1):33-44.

Brandão ASP. Introdução. Os principais problemas da agricultura brasileira: análise e sugestões. Rio de Janeiro: IPEA/INPES, 1988. (Série PNPE).

Brandão Filho JB. Breves considerações sobre as mudanças no papel do Estado na agricultura brasileira. IN:Bernardes JA,Freire Filho OL.Organizadores.Geografia da soja:BR163:Fronteira sem Mutação.Rio de Janeiro:Arquimedes Edições;2006.

Brasil. Decreto Federal nº 4.074, de 4 de janeiro de 2002, que regulamenta a Lei Federal nº 7.802, de 11 de julho de 1989, em seu Artigo 1º, Inciso IV.

Brasil. Ministério da Agricultura Pecuária e Abastecimento. EMBRAPA Cerrados. Panorama da Política Agrícola Brasileira: a política de garantia de preços mínimos. Planaltina, DF, 2009.

Brasil. Ministério da Saúde. Informações de Saúde [Acesso em dezembro2011]. Disponível em:http://www.datasus.gov.br/datasus/datasus.php

Brasil. Ministério dos Transportes Planos de viação — evolução histórica, 1808-1973. Rio de Janeiro: 1974.p103-122.

Breilh J.Epidemiologia crítica:ciência emancipadora e interculturalidade.Rio de Janeiro:Editora FIOCRUZ; 2006.

Brilhante OM, Caldas LQA, coordenadores. Gestão e avaliação de risco em saúde ambiental- Rio de Janeiro; Editora Fiocruz. 1999.

Briggs D. Environmental health indicator: framework and methodologies. Geneva: WHO, 1999; 119.

Câmara VM, Tambellini AT. Considerações sobre o uso da epidemiologia nos estudos em saúde ambiental.Rev. bras. epidemiologia. 2003; vol.6, n.2. 95-104.

Câmara VM, Galvão LAC. A patologia do trabalho numa perspectiva ambiental. In:René Mendes, Organizador. Patologia do Trabalho. 2ª Ed.São Paulo, Editora Atheneu, 2003; 1657-79.

Cardoso FH, Muller G. Amazônia: expansão do capistalismo. São Paulo: Brasiliense, 1977.

Carvalho ISH de. Potenciais e limitações do uso sustentável da biodiversidade do Cerrado: um estudo de caso da Cooperativa Grande Sertão no Norte de Minas [Dissertação de mestrado]. Brasília:Universidade de Brasília;2007. p 165.

Clapp R; Jacobs MM; Loechler EL. Environmental and Occupational Causes of Cancer – New Evidence, 2005-2007. Lowell Center for Sustainable Production. University of Massachusetts, 2007.

Disponível em: http://www.sustainableproduction.org/proj.envh.canc.causes.shtml.

Coelho CN. 70 Anos de política agrícola no Brasil (1931-2001). Revista de Política Agrícola, Brasília, Ministério da Agricultura e Abastecimento, n.3, 2001.

Conway GR, Barbier EB. After the green revolution: sustainable agriculture for development. Earthscan Publications, London. 1990; 205.

Corvalán C, Nurminen ME, Pastides H. Linkage methods for environment and health analysis. Technical guidelines. A report of the Health and Environment Analysis for Decision-Making (HEADLAMP) Project. Geneva: WHO/UNEP, 1997; 153.

Corvalan C, Briggs D, Ekjellstrom T. The need for information:Environmental Health Indicators. In: Corvalán, C., Briggs, D. e Zielhuis, G. Editores. Decision-making in environmental health. From evidence to action. WHO, 2000.

Costa JM. Amazônia: recursos naturais, tecnologia e desenvolvimento (contribuição o debate). In: Costa JMM.Editor. Amazônia: desenvolvimento e ocupação. Rio de Janeiro: IPEA/INPES, 1979.

Cox C. Glyphosate. Herbicide Factsheet. Journal of Pesticide Reform 2004; 24(4): 10-15.

Chrisman JR, Koifman S, Sarcinelli PN, Moreira JC, Koifman R, Meyer A. Vendas de pesticidas e mortalidade por câncer de adulto do sexo masculino no Brasil. Revista internacional de higiene e saúde ambiental, 2009; 212(3):310-21.

Crouch ML. Biotechnology is not compatible with sustainable agriculture. Journal of Agricultural and Environmental Ethics. 1995;8(2),03-111. Cunha JMP. Dinâmica migratória e o processo de ocupação do Centro-Oeste brasileiro. Revista Brasileira de Estudos de População, São Paulo;2006, v.23, n.1.

Davis JH, Goldberg RA. A concept of agribusiness. Division of research. Graduate School of Business Administration. Boston: Harvard University, 1957.

Dedecca C. & Rosandiski E. Enfim, esperança de réquiem para a tese da "inempregabilidade". In: Fagnani E & Pochmann M Organizadores. Debates contemporâneos: economia social e do trabalho, nº 1: Mercado de trabalho, relações sindicais, pobreza e ajuste fiscal. São Paulo: LTr, 2007.

Delgado GC. Expansão e modernização do setor agropecuário no pós guerra: um estudo da reflexão agrária. Estudos Avançados. São Paulo.1985;15(43):157-172.

De Roos AJ, Blair A, Rusiecki JA, Hoppin JA, Svec M, Dosemeci M, Sandler DP, Alavanja MC. Cancer incidence among glyphosate-exposed pesticide applicators in the Agricultural Health Study. Environ Health Perspect. 2005.113(1):49-54.

Dich J, Zahm SH, Hanberg A, Adami HO. Pesticides and cancer. Cancer Causes Control. 1997; v. 8, n° 3, 420- 443.

Dores, EFGC. Contaminação do ambiente aquático por pesticidas. Estudo de caso: águas usadas para consumo humano em Primavera do Leste, Mato Grosso – análise preliminar. Revista Química Nova. 2001; v. 24, nº1.

Ecobichon DJ. Toxic effects of pesticides. In: Klaassen CD, editor. Casarett and Doll's toxicology: the basic science of poisons. 6.ed. New York: McGraw-Hill, 2001. p.763-810.

EcoPortal.net., 2007. El glifosato provoca las primeras etapas del cancer.[Acesso em 08novembro2010]. Disponível em: www.ecoportal.net/layout/set/print/content/view/full/67941/printversion/1.

Ehlers E. Agricultura sustentável: origens e perspectivas de um novo paradigma, Livros da Terra Editora, São Paulo. 1996; 178.

Ekström AM, Mikael Eriksson, Lars-Erik Hansson, Anders Lindgren, Lisa Beth Signorello, Olof Nyre'n, and Lennart Hardell. Occupational Exposures and Risk of Gastric Cancer in a Population-based Case-Control Study. Cancer Research 59, 5932–5937, 1999.

Feldman RG. Occupational and environmental neurotoxicology. Philadelphia: LippincottRaven Publishers, 1999.

Freitas CM, Porto MFS. Saúde, ambiente e sustentabilidade. Rio de Janeiro: Ed. Fiocruz, 2006.

Figueiredo AH. As formas de intervenção pública na apropriação do espaço amazônico.In: Mesquita OV, Silva ST. Geografia e questão ambiental. Rio de Janeiro: IBGE,1993.

Funasa (Fundação Nacional de Saúde). Centro Nacional de Epidemiologia. Guia de vigilância epidemiológica. Ministério da Saúde. Brasília, DF: 1998. cap. 5.15.

Furtado C. 1920 – Introdução ao desenvolvimento: enfoque histórico-estrutural. 3.ed.revista pelo autor.- Rio de Janeiro:Paz e Terra; 2000.

Gibson G, Koifman S. Consumo de Agrotóxicos e distribuição temporal da proporção de nascimentos masculinos no estado do Paraná, Brasil. Rev Panam Salud Publica. 2008;24(4): 240-247.

Giddens A. As consequências da modernidade. Tradução de Raul Fiker. São Paulo: Unesp. 1991; 79-80.

Goldblatt D. Origem cultural e social dos movimentos ambientalistas: Jürgen Habermas. In: Teoria social e ambiente. Lisboa: Instituto Piaget, 1996; 169-219.

Goldman R, Shields Pg. Food Mutagens. J. Nutr. 2003 3: 9655 – 9735.

Gomes DC, Silva EP. Dinâmica do desenvolvimento do cerrado sob a ótica evolucionista. In: Anais Encontro da sociedade brasileira de sistemas de produção, 3, Florianópolis;1998.

Gonzaga AM. Perfil epidemiológico das intoxicações por agrotóxicos notificadas no estado de mato grosso no período de 2001 a 2004[dissertação de mestrado]. Florianópolis: Universidade Federal de Santa Catarina;2006.

Graziano Neto, F. Questão agrária e ecologia: crítica da moderna agricultura. São Paulo: Editora Brasiliense, 1982.

Grisólia KC. Agrotóxicos-mutações, reprodução e câncer. Brasília: Editora UnB, 2005.

Guerra MR, Gallo CVM, Mendonça GAS. Risco de câncer no Brasil: tendências e estudos epidemiológicos mais recentes. Revista Brasileira de Cancerologia. 2005; 51(3): 227-234.

Guidolin SM. Expansão da cadeia agroindustrial do Centro-Oeste:uam análise com base em microrregiões geográficas[monografia].Araraquara:Universidade Estadual Paulista;2003.

Guidolin SM, Pôrto Júnior SS. Expansão agrícola e crescimento econômico: impactos sobre a pobreza e a desigualdade. In:Fórum BNB de Desenvolvimento/ XI Encontro Regional de Economia, 2006. Fortaleza;2006.

Guimarães EM, Leme HJC. Caracterização histórica e configuração espacial da

estrutura produtiva do Centro-Oeste. Redistribuição da população e meio ambiente: São Paulo e Centro-Oeste. Textos NEPO 33, Campinas, NEPO/UNICAMP, 1998.

Hacon S, Schutz G, Bermejo PM. Indicadores de Saúde Ambiental: uma ferramenta para a gestão integrada de saúde e ambiente. In Cadernos Saúde coletiva/ Universidade Federal do Rio de Janeiro, Núcleos de Estudos de Saúde Coletiva. 2005; v.13, n.1.

Hacon, Sandra Coordenadora.Geo Saúde: cidade de São Paulo.Rio de Janeiro:ENSP/FIOCRUZ, 2008.

Hardell L, Eriksson M, Nordstrom M. Exposure to pesticides as risk factor for non-Hodgkin's lymphoma and hairy cell leukemia: pooled analysis of two Swedish case-control studies. Leuk Lymphoma. 2002.43(5):1043-9.

Hogan DJ.Coordenador.Um breve perfil ambiental da região centro-oeste. Campinas: Editora da UNICAMP,2000. Disponivel em:

http://www.nepo.unicamp.br/textos/publicacoes/livros/migracao_centro/03pronex_0 6_Um_Breve_Perfil.pdf

Hu J, et al. 2002. Renal cell carcinoma and occupational exposure to chemicals in Canada. Occ Med 52:157-164.

Instituto Brasileiro de Geografia e Estatística – IBGE – Censo Agropecuário 2006.

Instituto Brasileiro de Geografia e Estatística Comunicação Social de 18 de novembro de 2009 — [acesso em 22agosto2011].Disponível em: http://www.ibge.gov.br/home/presidencia/noticias/noticia_visualiza.php?id_noticia=1497&id_pagina=1

Instituto Brasileiro de Geografia e Estatística – IBGE – Censo Demográfico 2010.

Instituto Brasileiro de Geografia e Estatística - IBGE – Brasil, série histórica de área plantada; série histórica de produção agrícola; safras 1998 a 2005. [Acesso em janeiro 2010].Disponivel em:

http://www.ibge.gov.br/home/estatistica/economia/pam/2010/PAM2010_Publicacaocompleta.pdf

Instituto Brasileiro de Geografia e Estatística - IBGE. Levantamento sistemático da produção agrícola (LSPA).[Acesso em dezembro2010]. Disponível em: http://www.ibge.gov.br.

Instituto de Defesa Agropecuária de Mato Grosso. Relatório de consumo de agrotóxico em Mato Grosso durante o ano de 2005. Cuiabá:INDEA-MT; 2006.

Instituto de Terras de Mato Grosso [acesso em 28 setembro 2011] Disponível em: http://www.intermat.mt.gov.br

Instituto Nacional de Câncer (Brasil). Coordenação de Prevenção e Vigilância de Câncer.Câncer da criança e adolescente no Brasil: dados dos registros de base populacional e de mortalidade. / Instituto Nacional de Câncer. Rio de Janeiro: INCA, 2008.

Instituto Nacional de Câncer. Ministério da Saúde. Coordenação de Prevenção e Vigilância. Estimativa 2010. Incidência de Câncer no Brasil. Rio de Janeiro, RJ, 2009. Disponível em: http://bvsms.saude.gov.br/bvs/controle_cancer/

International Agency for Research of Cancer. Monographs on the evaluation of carcinogenic risks to humans. Lyon, France. [acesso em 20agosto2010]. Disponivel em: http://monographs.iarc.fr/

International Union Against Cancer. Global Cancer Control. Geneve, Switzerland, UICC, 2005.

Jeyaratnam J, Lun KC, Phoon WO. Survey of acute pesticide poisoning among agricultural workers in four Asian countries. Bulletin of the World Health Organization, 1987, 65(4):521-527.

Ji BT, et al. 2001. Occupational exposure to pesticides and pancreatic cancer. Am J Ind Med 39(1):92-99.

Keller-Byrne JE, Khuder SA, Schaub EA. Meta-analyses of leukemia and farming. Environment Res. 1995; 71; 1-10.

Keller-Byrne JE, Khuder SA, Schaub EA. Meta-analyses of prostate cancer and farming. Am. J. Ind. Med. 1997; 31: 580-586.

Khuder SA et al. Meta-analyses of non-Hodgkin's lymphoma and farming" Scandinavian Journal of Work, Environment and Health. 1998; 24(4): 225-261.

Koifman S, Hatagima A. Exposição aos agrotóxicos e câncer ambiental. In: Peres F, Moreira JC. É veneno ou é remédio: agrotóxicos, saúde e ambiente. Rio de Janeiro, Fiocruz. 2003; 75-99.

Koifman S, Koifman RJ, Meyer, A. Human reproductive system disturbances and pesticide exposure in Brazil. Cadernos de Saúde Pública, Rio de Janeiro. 2002; v.18, n. 2, 435-45.

Koifman S, Koifman RJ. Environment and cancer in Brazil: an overview from a public health perspective. Mutation Research, Netherlands. 2003; v. 544, n. 2-3, 305-11.

Leandra da SILVA, L. O papel do estado no processo de ocupação das áreas de cerrado entre as décadas de 60 e 80 caminhos de geografia. Revista on line, Uberlândia, Instituto de Geografia, Universidade Federal de Uberlândia, Ano 1, v.2,

dez.2000.[Acesso em 2011].Disponível em: http://www.ig.ufu.br/volume2/artigo22.pdf

Lee WJ, et al, 2005. Agricultural pesticide use and risk of glioma in Nebraska, United States. Occupational and Environmental Medicine; 62:786-792.

Leff E. Organizer. Ciencias sociales y formación ambiental. Madri: Gedisa. 1994.

Leff, E. Epistemologia ambiental. São Paulo: Cortez, 2001

Leff E. Saber ambiental: sustentabilidade, racionalidade, complexidade, poder; Petropolis, RJ: Vozes, 2001.

Lessa I; Mendonça GAS, Teixeira MTB. Doenças crônicas nãotransmissíveis no Brasil: dos fatores de risco ao impacto social. Boletin da Oficina Sanitaria Panamericana, Washington, , 1996. v. 125, n. 5.

Little J. Introduction. In: Little J. Epidemiology of childhood cancer. Lyon:IARC: World Health Organization; 1999. p.1-9.

Mao Y, et al. 2000. Non-Hodgkin's lymphoma and occupational exposure to chemicals in Canada. Ann Oncol 11(Suppl 1): 69-73.

Matos GB, Santana OAM, Nobre LCC. Intoxicação por agrotóxico. In: Centro de Estudos da Saúde do Trabalhador. Superintendência de Vigilância e Proteção da Saúde; Secretaria da Saúde do Estado. Manual de normas e procedimentos técnicos para a vigilância da saúde do trabalhador. Salvador (BA): Cesat/Sesab. 2002; 249-80.

Martins JS. Fronteira: a degradação do outro nos confins do humano. São Paulo: Hucitec, 1997

McDuffie HH, Pahwa P, McLaughlin JR, Spinelli JJ, Fincham S, Dosman JA, Robson D, Skinnider LF, Choi NW. Non-Hodgkin's Lymphoma and Specific Pesticide Exposures in Men: Cross-Canada Study of Pesticides and Health. Cancer Epidemiology, Biomarkers & Prevention; 2001. v. 10, 1155–63.

Meyer A, Sarcinelli PN, Moreira JC. Estarão alguns grupos populacionais brasileiros sujeitos a ação dos disruptores endócrinos? Cad. Saúde ública, Rio de Janeiro: 1999; v. 15. n 4.

Meyer A, Chrisman J, Moreira JC, Koifman S. Cancer mortality among agricultural workers from Serrana Region, state of Rio de Janeiro, Brazil. Environ Res. 2003;93(3):264-71. Cancerologia 2005; 51(3): 227-234 22.

Meyer A, Seidler FJ, Aldridge JE, Tate CA, Cousins MM, Slotkin TA. Critical periods for chlorpyrifos-induced developmental neurotoxicity: alterations in adenylyl

cyclase signaling in adult rat brain regions after gestational or neonatal exposure. Environ Health Perspect.2004;112(3):295-301.

Miligi L, Costantini AS, Veraldi A, Benvenuti A; WILL, Vineis P. Cancer and pesticides: an overview and some results of the Italian multicenter case-control study on hematolymphopoietic malignancies. Ann N Y Acad Sci. 2006.1076:366-77.

Mills PK, Zahm SH. Organophosphate pesticide residues in urine of farmworkers and their children in Fresno County, California; 2001 Am J Ind Med 40:571–577.

Ministério da Saúde. Agência Nacional de Vigilância Sanitária. Vigilância do Câncer Ocupacional e Ambiental. Instituto Nacional de Câncer. Rio de Janeiro: INCA,2006.

Ministério da Saúde. Secretaria de Vigilância Sanitária. Departamento Técnico-Normativo Divisão de Meio Ambiente a Ecologia Humana. OPAS Manual de Vigilância da Saúde de Populações Expostas a Agrotóxicos. Brasília, DF. 1997.

Ministério da Saúde. Secretaria de Vigilância Sanitária. Manual de vigilância da saúde de populações expostas a pesticidas. OPAS/OMS. Brasília; 1997.

Ministério da Saúde. Instituto Nacional de Câncer. Coordenação de Prevenção e Vigilância. Vigilância do câncer relacionado ao trabalho e ao ambiente. 2ª edição revista e atualizada, 2010.

Mirra AP, Latorre MRDO, Veneziano DB. Incidência, Mortalidade e Sobrevida do Câncer da Infância no Município de São Paulo. São Paulo: Registro de Câncer de São Paulo: 2004.

Monteiro GTR, Koifman S. Mortalidade por tumores de cérebro no Brasil, 1980-1998. Cad Saúde Pública. 2003;19(4):1139-51.

Moreira JC et al. Avaliação integrada do impacto do uso de agrotóxicos sobre a saúde humana em uma comunidade agrícola de Nova Friburgo, RJ. Revista Ciência & Saúde Coletiva, Rio de Janeiro. 2002; v.7, n.2, 299-311.

Mueller CC. Agriculture, urban bias development and the environment: the case of Brasil. Documento de Trabalho n. 14, Brasília, ISPN, 1992.

Mueller CC. Os economistas e as relações entre o sistema econômico e o meio ambiente. Brasília: Editora UnB. 2007.

Müller G. Complexo agroindustrial e modernização agrária. São Paulo: Hucitec, 1989.

Nunes MV, Tajara EH. Efeitos tardios dos praguicidas organoclorados no homem. Revista de Saúde Pública. 1998; v.32, n.4, p.372-383..

Oliveira AU. A geografia das lutas no campo. 5 ed. São Paulo: Contexto;1993.

Oliveira Jr. PHB. Notas sobre a história da agricultura através do tempo, Fase, Rio de Janeiro;1989;72.

Oliveira LAP. A nova dinâmica demográfica da região Centro-Oeste. In: Encontro de demografia da região centro-oeste, 1., 1997, Brasília. Anais Brasília: CODEPLAN, 1997. (Cadernos de Demografia)

Olivette, MP. A estrutura do espaço rural do Centro-Oeste Brasileiro. Agricultura em São Paulo, São Paulo; 1992, v.47, n.2.

Organização Mundial da Saúde e Organização Pan-Americana da Saúde. Millennium Ecosystem Assessment. Ecosystem and human well-being.2005 [acesso em 28março2010]. Disponível em: http://www.millenniumassessment.org

Organização Pan-Americana da Saúde. Policies and managerial guidelines for national cancer control programs. Rev Panam Salud Publica/Pam Am J Public Health. 2002; 12(5):366-70.

Palli D, Vineis P, Russo A, Berrino F, Krogh V, Masala G, et al. Diet, Metabolic

Polymorphisms And Dna Adducts: The Epic-Italy Cross-Sectional Study. Int J Cancer.2000 Aug1;87(3):444-51.

Palma DCA, Pignati W,Lourencetti C, Uecker ME.Agrotóxicos em leite humano de mães residentes em Lucas do Rio Verde-MT.ISimposio Brasileiro de Saude Ambiental.Belém/PA,2010.

Pereira BD.Mato Grosso-Principais eixos viários e a modernização da agricultura. Cuiabá: Editora UFMT, 2007.

Peres F, Moreira JC.Organizador. É veneno ou remédio? Agrotóxicos, saúde e ambiente. Rio de Janeiro: Editora Fiocruz. 2003; 384 p.

Peres F, Oliveira-Silva JJ, Della-Rosa HV, Lucca SR.Desafios ao estudo da contaminação humana e ambiental por agrotóxicos.Ciênc. saúde coletiva. 2005. v.10, 27-37.

Periago MR, Galvão LA, Corvalan CE, Finkelman J. Environmental health in Latin America and the Caribbean: at the crossroads. Saúde e sociedade. 2007; v.16, n.3,14-19.

Picoli F. Amazônia e o capital: uma abordagem do pensamento hegemônico e do alargamento da fronteira. Sinop-MT: Amazônia Editora; 2005.

Pignatti MG. Saúde e ambiente: as doenças emergentes no Brasil. Ambiente e Sociedade. 2004; vol.7, n.1,133-147.

Pignatti MG. As ONGs e a política ambiental nos anos 90: um olhar sobre Mato Grosso. São Paulo: Annablume; Universidade Federal do Mato Grosso. Instituto de Saúde Coletiva; 2005.

Pignati WA. Os riscos, agravos e vigilância em saúde no espaço de desenvolvimento do agronegócio no Mato Grosso [tese de doutorado]. Rio de Janeiro: Fiocruz/Ensp, 2007.

Pimm S, Jenkins C. Conservação da biodiversidade. Scientific American Brasil, 2005; v.41, 58-65.

Polak, P. O grande potencial da pequena agricultura. Scientific American. 2005; v. 41, 76-83.

Reigart JR, Roberts JR. Reconocimiento y manejo de los envenenamientos por pesticidas. 5.ed. Washington: 1999.[Acesso em:05 set. 2010]. Disponível em: http://www.epa.gov/pesticides/safety/healthcare.

Ribeiro LR, Salvadori DMF, Marques EK. Genética do Câncer humano. In: Mutagênese ambiental. Canoas: Ed. ULBRA, 2003;29-48.

Ribeiro KCB, Lopes LF, de Camargo B. Trends in childhood leukemia mortality in Brazil and correlation with social inequalities. Cancer. 2007;110(8):1823-31.

Rieder A. Aspectos da interação do homem com pesticidas no ambiente: focando a cotonicultura e com ênfase às bordas do Alto Pantanal, Mato Grosso, Brasil.- São Carlos. Tese (Doutorado): Universidade Federal de São Carlos, 2005.

Rigotto R e Augusto LG. Saúde e ambiente no Brasil: desenvolvimento, território e iniquidade social. Cad. Saúde Pública, Rio de Janeiro; 2007 23 Sup 4:S475-S501.

Rigotto, R.M. Saúde Ambiental & Saúde dos Trabalhadores: uma aproximação promissora entre o verde e o vermelho. Rev. Bras. Epidemiol. 2003; v. 6, n. 4.

Rodrigues FAC, Weber OLS, Dores EFGC, Guimarães MNK; Tidon R, Grisólia CK. Ecogenotoxicologia dos agrotóxicos: avaliação Comparativa entre ecossistema agrícola e área de Proteção ambiental. Curitiba. Pesticidas: revista ecotoxicologia e meio ambiente. 2005; v. 15.

Romeiro A.; Reydon B. Desenvolvimento da agricultura familiar e reabilitação das terras alteradas na Amazônia. Campinas: UNICAMP, 1998.

Rusiecki JA, De Roos A, Lee WJ, Dosemeci M, Lubin JH, Hoppin JA, Blair A,

Alavanja MC. Cancer Incidence Among Pesticide Applicators Exposed to Atrazine in the Agricultural Health Study. J Natl Cancer Inst. 2004.15;96(18):1375-82.

Sachs I. Desenvolvimento: includente, sustentável, sustentado. Rio de Janeiro: Garamondo, 2008.

Samaja J. A reprodução social e a saúde. Elementos teóricos e metodológicos sobre a questão das "relações" entre saúde e condições de vida. Salvador: Editora Casa da Qualidade, 2000.

Samaja J.Epistemologia de la salud:reproduccion social, subjetividade y transdiciplina.1ed.Buenos Aires:Lugar,2007.

Sanborn, M., Kerr, KJ., Sanin, LH., Cole, DC., Bassil, KL., Vakil, C. Noncancer Health effects of pesticides: systematic review and implications for family doctors. Canadian Family Physician. Review. PubMed 2007; 53(10), 1712-20

SantosLG, Lourencetti C, Pinto A, Pignati W, Dores EFG. Validation and application of analytical method for determining pesticides in the gas phase of ambient air. Journal of Environmental Science and Health. Part B. 2011; v. 46,150-162.

Sharpe CR, et al. Activities and exposures during leisure and prostate cancer risk. Can Epid Biomark Prev. 2001;10(8): 855-860.

Silva JSV et al. Levantamento do desmatamento no Pantanal brasileiro até 1990/91. Pesquisa Agropecuária Brasileira. Brasília. 1998; v.33, número especial, 1739-1745.

Silva JM. Cânceres hematológicos na Região Sul de Minas Gerais. Tese (doutorado) Universidade Estadual de Campinas. Faculdade de Ciências Médicas Campinas, 2007.

Sindicato das Indústrias de Defensivos Agrícolas - SINDAG. Dados apresentados pelo SINDAG. In: Seminário Nacional Sobre Agrotóxicos, Saúde e Ambiente. Organizado pela ANVISA, MP e SES/PE, Olinda, outubro 2005.

Sindicato Nacional da Indústria de Produtos de Defesa Agrícola (SINDAG). O setor de defensivos agrícolas no Brasil.2010. [acesso em 29março2011]. Disponível em: http://www.sindag.com.br/noticia.php?News_ID=2065.

Soares WL, Porto MF. Atividade agrícola e externalidade ambiental: uma análise a partir do uso de agrotóxicos no cerrado brasileiro. Ciênc. saúde coletiva.Janmar.2007; 12(1):131-143.

Solomon G. Pesticides and human health: a resource for health care professionals. California: Physicians for Social Responsibility (PSR) and Californians for Pesticide Reform (CPR); 2000.

Sutherst RW. Global change and human vulnerabilidty to vector-borne diseases. Clinical Microbiology Reviews. 2004; v.17, 136-73.

Thilly WG. Have Environmental Caused Oncomutations In People? Nat Genet., 2003 34(3):255-9.

Trapé AZ. Efeitos toxicológicos e registro de intoxicações por agrotóxicos.1993. [Acesso em junho, 2010]. Disponvel em: http://www.feagri.unicamp.br/tomates/pdfs/eftoxic.pdf.

US Environmental Protection Agency (EPA). Atrazine update. [Acesso em 25janeiro2011]. Disponível em:

http://www.epa.gov/pesticides/reregistration/atrazine/atrazine_update.htm

Van Maele-Fabry G, Willems JL. Prostate cancer among pesticide applicators: a meta-analysis. International Archives of Occupational and Environmental Health. 2004; v. 77, n. 8, 559-570.

Veiga JE. O desenvolvimento agrícola: uma visão histórica. São Paulo, Edusp-Hucitec, 1991; 21.

Verdes JAA,; Companioni DR. Plaguicidas Organoclorados. Centro Panamericano de Ecología Humana Y Salud. Mepetec, Estado de México, México: 1990.p.97.

Vineis P. Câncer As Evolutionary Process At The Cell Level: An EpidemiologicalPerspective. Carcinogenesis, 2003 24:1-6.

Von Schirnding YER. Indicadores para o estabelecimento de políticas e a tomada de decisão em saúde ambiental – Versão preliminar. OMS, Genebra;1998.

Waddell BL, Zahm SH, Baris D, Weisenburger DD, Holmes F, Burmeister LF, Cantor KP, Blair A. Agricultural use of organophosphate pesticides and risk of non-Hodgkin's lymphoma among males farmers (United States). Cancer Causes Control. 2001, 12; 509-517.

Wagner E. Desenvolvimento da região dos cerrados. In: Goedert W. Editor. Solos dos Cerrados: tecnologias e estratégias de manejo. Planaltina: EMBRAPA, 1986.

Warnken PF. A influência da política econômica na expansão da soja no Brasil: Revista de Política Agrícola, Brasília;1999.Ano VIII, n.1.

World Bank. World Development Report 2000/2001: Attacking poverty. Washington: World Bank, 2001.

Wünsch-Filho V, Koifman S. Tumores Malignos Relacionados com o trabalho. IN: Mendes R. Organizador Patologia do Trabalho.SP. Atheneu, 2003.

Zakrzewski, SF.Princiles of environmental toxicology. American Chemical Society, Washington-DC, 1991.p.270.

Zahm SH, Ward MH. Pesticides and childhood cancer. Environ Health Perspect. 1998 Jun;106s3:893-908.Occupational Epidemiology Branch, National Cancer Institute, Rockville, Maryland 20892, USA. zahms@epndce.nci.nih.gov

Zheng T, Zahm SH, Cantor KP, Weisenburger DD, Zhang Y, Blair A. Agricultural exposure to carbamate pesticides and risk of non-Hodgkin lymphoma. J Occup Environ Med. 2001.43(7):641-9.

ANEXO I – Termo de Aprovação Ética de Projeto de Pesquisa:_

ANEXO II – Planilhas de dados para a associação

								<u> </u>			
Mortalidade	por Câncer em	menores de	20 anos								
Municipio	MediaAgrotóxico	NºObitos	MediaMort	Municipio	MediaAgrotóxi	N⁰Obitos	MediaMort	Municipio	MediaAgrotóxic	N°Obitos	MediaMort
Acorizal - M	1091,3570	1	0,1429	Feliz Natal -	23619,8000	3	0,4286	Pontes e Lacerda	36029,8800	8	1,1429
Água Boa - N	287425,0000	2	0,2857	Gaúcha do No	96107,4600	1	0,1429	Porto Alegre do	11801,4800	1	0,1429
Alta Floresta	101802,0000	5	0,7143	Glória D'Oest	6475,3290	1	0,1429	Porto dos Gaúch	95054,6200	2	0,2857
Alto Boa Vist	26254,6100	1	0,1429	Guarantã do l	13195,5800	3	0,4286	Porto Esperidião	17531,6400	1	0,1429
Alto Paragua	31842,3900	3	0,4286	Guiratinga - 1	432610,0000	5	0,7143	Poxoréo - MT	620612,2000	3	0,4286
Alto Taquari	452475,2000	1	0,1429	Indiavaí - M	2646,6770	1	0,1429	Primavera do Le	5619557,0000	5	0,7143
Araputanga -	26148,9100	3	0,4286	Itaúba - MT	87976,6500	3	0,4286	Querência - MT	906549,3000	1	0,1429
Arenápolis -	11868,0700	2	0,2857	Jaciara - MT	384808,3000	3	0,4286	Reserva do Caba	1177,6030	2	0,2857
Aripuanã - M	9996,8600	3	0,4286	Jangada - MT	6917,6660	4	0,5714	Ribeirãozinho -	5209,3970	1	0,1429
Barra do Bugi	143316,0000	6	0,8571	Jauru - MT	2035,2040	1	0,1429	Rondonópolis -	1111729,0000	25	3,5714
Barra do Garç	167315,9000	5	0,7143	Juara - MT	47961,6300	5	0,7143	Rosário Oeste - I	15216,1400	2	0,2857
Brasnorte - N	1381220,0000	2	0,2857	Juína - MT	37554,4000	7	1,0000	Santa Terezinha	48022,3000	1	0,1429
Cáceres - MT	85348,2200	8	1,1429	Juscimeira - 1	155379,2000	3	0,4286	Santo Antônio d	44679,1400	1	0,1429
Campinápolis	10892,0700	1	0,1429	Lucas do Rio	3176834,0000	3	0,4286	São Félix do Ara	13252,4700	1	0,1429
Campo Novo	7178558,0000	5	0,7143	Marcelândia	7630,6220	1	0,1429	São José do Rio	297182,1000	1	0,1429
Campo Verde	3344861,0000	5	0,7143	Mirassol d'Oe	15724,1900	2	0,2857	São José dos Qua	55180,7400	5	0,7143
Canabrava do	13744,2100	2	0,2857	Nobres - MT	17976,6400	6	0,8571	Sinop - MT	992245,1000	10	1,4286
Canarana - M	733663,1000	3	0,4286	Nortelândia -	153367,2000	1	0,1429	Sorriso - MT	3735864,0000	9	1,2857
Carlinda - Mi	55865,4500	1	0,1429	Nossa Senhor	1975,1600	1	0,1429	Tangará da Serra	1044001,0000	7	1,0000
Castanheira -	17564,5000	1	0,1429	Nova Bandei	11593,2400	1	0,1429	Tapurah - MT	1144353,0000	2	0,2857
Chapada dos	51526,0300	4	0,5714	Nova Canaã	88395,9700	1	0,1429	Terra Nova do N	6562,3230	3	0,4286
Cláudia - MT	53342,8100	1	0,1429	Nova Monte	57726,1600	1	0,1429	União do Sul - M	13562,9100	1	0,1429
Colíder - MT	36596,1400	4	0,5714	Nova Olímpi	119150,8000	2	0,2857	Vale de São Dom	329,2719	1	0,1429
Colniza - MT	1843,1200	2	0,2857	Nova Ubirata	875690,2000	1	0,1429	Várzea Grande -	5146,2570	42	6,0000
Comodoro - !	212119,1000	3	0,4286	Nova Xavant	513864,0000	4	0,5714	Vila Rica - MT	281,6326	2	0,2857
Cuiabá - MT	8418,8290	86	12,2857	Novo São Joa	770908,0000	1	0,1429				
Curvelândia -	1837,6560	1	0,1429	Paranaíta - M	141201,8000	2	0,2857				
Denise - MT	1584,1750	1	0,1429	Peixoto de A	4639,6810	6	0,8571				
Diamantino -	2693253,0000	2	0,2857	Poconé - MT	1467,6660	4	0,5714				
Dom Aquino	304088,7000	1	0,1429	Ponte Branca	499,4268	1	0,1429				

Morbidade	por Câncer e	em Menores	de 20 anos								
Municipio	MediaAgroto	NºCasosNovo	MédiaMorb	Municipio	MediaAgroto	N°CasosNovo	MédiaMorb	Municipio	MediaAgroto	NºCasosNovo	MédiaMorb
Acorizal - M'	1105,9129	3	0,6	Feliz Natal -	22465,526	1	0,2	Paranaíta - M	134029,47	3	0,6
Água Boa - M	305797,88	2	0,4	Guarantã do 1	11429,491	4	0,8	Paranatinga -	154825,72	4	0,8
Alta Floresta	102887,53	8	1,6	Guiratinga - M	419234,73	6	1,2	Peixoto de A	4445,3073	3	0,6
Alto Araguaia	90509,835	2	0,4	Indiavaí - MT	2762,7007	1	0,2	Poconé - MT	1527,5393	10	2
Alto Paragua	30873,82	3	0,6	Itaúba - MT	92499,716	2	0,4	Pontes e Lac	32518,247	9	1,8
Alto Taquari	462418,68	2	0,4	Jaciara - MT	382536,05	4	0,8	Porto dos Ga	105899,67	4	0,8
Araputanga -	25998,913	6	1,2	Jangada - MT	7284,4878	4	0,8	Porto Esperi	19055,589	2	0,4
Arenápolis - !	14598,561	3	0,6	Jauru - MT	2090,9768	2	0,4	Poxoréo - M	636059,54	4	0,8
Aripuanã - M	7656,2475	4	0,8	Juara - MT	49907,205	5	1	Primavera do	5858704,8	10	2
Barão de Mel	1148,7986	2	0,4	Juína - MT	38708,484	9	1,8	Querência - N	863312,64	1	0,2
Barra do Bugi	148738,16	13	2,6	Juruena - MT	11466,337	1	0,2	Rondonópoli	1095792,4	54	10,8
Barra do Garç	160613,38	4	0,8	Juscimeira - M	153980,99	1	0,2	Rosário Oest	16128,289	4	0,8
Brasnorte - M	1405823	5	1	Lambari D'O	29628,622	1	0,2	Salto do Céu	7334,9129	1	0,2
Cáceres - MT	84019,308	18	3,6	Lucas do Rio	3209992,2	5	1	Santo Afonso	2756,1961	1	0,2
Campo Novo	7046206,2	4	0,8	Luciara - MT	193,6063	3	0,6	Santo Antôn	49043,127	6	1,2
Campo Verde	3387420,3	7	1,4	Marcelândia -	7778,3901	3	0,6	São José do P	3409,6359	3	0,6
Canabrava do	14475,714	1	0,2	Mirassol d'Oe	16554,713	3	0,6	São José dos	56153,302	5	1
Canarana - M	771154,61	2	0,4	Nobres - MT	17788,386	3	0,6	Sinop - MT	1019130,6	24	4,8
Carlinda - M	43784,295	1	0,2	Nortelândia -	157526,23	2	0,4	Sorriso - MT	3755971,4	13	2,6
Castanheira -	18565,364	1	0,2	Nova Bandeii	9052,1456	2	0,4	Tangará da S	1052614,7	14	2,8
Chapada dos	47837,879	3	0,6	Nova Brasilâı	44141,282	2	0,4	Tapurah - M	1318943,3	3	0,6
Cláudia - MT	57498,673	5	1	Nova Canaã	83730,565	1	0,2	Terra Nova d	6629,5307	5	1
Colíder - MT	32157,735	11	2,2	Nova Lacerda	63953,073	1	0,2	Tesouro - M	116655,91	1	0,2
Comodoro - l	192616,12	2	0,4	Nova Marilâr	23075,024	2	0,4	União do Sul	14015,409	6	1,2
Conquista D'O	8005,0384	1	0,2	Nova Maring	204669,45	1	0,2	Várzea Grand	4890,2331	88	15,4
Cuiabá - MT	8298,0934	210	31,8	Nova Mutum	2625668	6	1,2	Vera - MT	189888,47	2	0,4
Curvelândia -	2075,8989	1	0,2	Nova Olímpia	120051,91	2	0,4	Vila Bela da S	44677,946	1	0,2
Denise - MT	1663,5984	5	1	Nova Xavant	556114,37	7	1,4	Vila Rica - M	271,53919	2	0,4
Diamantino -	2722849	2	0,4	Novo Horizo	5207,7914	1	0,2				
Dom Aquino	309721,52	2	0,4	Novo São Joa	673818,87	1	0,2				

ANEXO III – Planilhas das Tabelas dos Índices dos Componentes da Matriz FPEEE:

Índice de Força Motriz

Ordem	Municípios	IFM	Ordem	Municípios	IFM	Ordem	Municípios	IFM	Ordem	Municípios	IFM
	1 Cuiabá	0,0000	31	São José dos Quatro N	0,9020	61	Marcelândia	0,9574	91	Tesouro	0,977
	2 Rondonópolis	0,5379	32	Guiratinga	0,9023	62	Alto Paraguai	0,9603	92	Glória D'Oeste	0,9786
	3 Várzea Grande	0,5652	33	Juara	0,9027	63	General Carneiro	0,9603	93	Nortelândia	0,9788
	4 Campo Novo do Parecis	0,5875	34	Vera	0,9086	64	Itaúba	0,9611	94	Nova Guarita	0,979
	5 Diamantino	0,6615	35	Paranatinga	0,9088	65	Cocalinho	0,9613	95	Nova Monte Verde	0,980
	6 Cáceres	0,7519	36	Água Boa	0,9113	66	São Félix do Araguaia	0,9620	96	Rio Branco	0,9813
	7 Sorriso	0,7709	37	Araputanga	0,9134	67	Salto do Céu	0,9621	97	Brasnorte	0,9815
	8 Alta Floresta	0,7874	38	Nova Olímpia	0,9141	68	Lambari D'Oeste	0,9639	98	Apiacás	0,9828
	9 Primavera do Leste	0,7896	39	Denise	0,9161	69	Nova Canaã do Norte	0,9658	99	Querência	0,983
1	O Pontes e Lacerda	0,7954	40	Nova Xavantina	0,9164	70	Matupá	0,9660	100	São Pedro da Cipa	0,9834
1	1 Itiquira	0,8029	41	Canarana	0,9174	71	Acorizal	0,9664	101	Nova Brasilândia	0,984
1	2 Jaciara	0,8356	42	Dom Aquino	0,9200	72	Santa Carmem	0,9667	102	Cotriguaçu	0,9852
1	3 Tangará da Serra	0,8400	43	Mirassol d'Oeste	0,9207	73	Porto Alegre do Norte	0,9678	103	Planalto da Serra	0,9862
1	4 Sinop	0,8557	44	Alto Taquari	0,9209	74	Ribeirão Cascalheira	0,9680	104	Tabaporã	0,987
1	Novo São Joaquim	0,8626	45	Peixoto de Azevedo	0,9210	75	Arenápolis	0,9693	105	Juruena	0,9872
1	6 Aripuanã	0,8669	46	Confresa	0,9224	76	Porto Esperidião	0,9699	106	Porto Estrela	0,987
1	7 Lucas do Rio Verde	0,8713	47	São José do Rio Claro	0,9231	77	Castanheira	0,9703	107	Pontal do Araguaia	0,9874
1	8 Pedra Preta	0,8728	48	Juscimeira	0,9294	78	Porto dos Gaúchos	0,9704	108	Alto Boa Vista	0,9880
1	9 Alto Garças	0,8768	49	Terra Nova do Norte	0,9308	79	Figueirópolis D'Oeste	0,9708	109	São José do Povo	0,9884
2	D Barra do Garças	0,8774	50	Santo Antônio do Leve	0,9328	80	Tapurah	0,9714	110	Nova Marilândia	0,989
2	1 Barra do Bugres	0,8786	51	São José do Xingu	0,9388	81	Indiavaí	0,9722	111	Novo Horizonte do N	0,9896
2	2 Poconé	0,8807	52	Jauru	0,9390	82	Nova Maringá	0,9729	112	Araguaiana	0,9900
2	3 Nova Mutum	0,8868	53	Vila Rica	0,9461	83	Torixoréu	0,9733	113	Reserva do Cabaçal	0,994
2	4 Campo Verde	0,8869	54	Alto Araguaia	0,9473	84	Barão de Melgaço	0,9738	114	Ponte Branca	0,9959
2	5 Juína	0,8874	55	Rosário Oeste	0,9478	85	Santo Afonso	0,9741	115	Ribeirãozinho	0,9966
2	6 Poxoréo	0,8878	56	Chapada dos Guimarão	0,9478	86	Nova Bandeirantes	0,9747	116	Luciara	0,9969
2	7 Colíder	0,8878	57	Campinápolis	0,9514	87	Jangada	0,9752	117	Araguainha	1,0000
2	8 Comodoro	0,8903	58	Nossa Senhora do Livr	0,9530	88	Paranaíta	0,9752			
2	9 Vila Bela da Santíssima Trin	0,8971	59	Cláudia	0,9535	89	Santa Terezinha	0,9768			
3	0 Guarantã do Norte	0,9003	60	Nobres	0,9538	90	Canabrava do Norte	0,9771			

rdem	Municípios	IFM	Ordem	Municípios	IFM	Ordem	Municípios	IFM	Ordem	Municípios	IFM
	1 510788 Serra Nova Dourada	0,4042	3	5 510700 Poxoréo	0,7291	71	510562 Mirassol d'Oeste	0,7698	106	510260 Campinápolis	0,785
	2 510267 Campo Verde	0,4414	3	7 510170 Barra do Bu	0,7297	72	510410 Guarantã do Norte	0,7699	107	510665 Pontal do Araguaia	0,786
	3 510340 Cuiabá	0,4754	3	510335 Confresa	0,7309	73	510385 Gaúcha do Norte*	0,7712	108	510010 Acorizal	0,786
	4 510263 Campo Novo do Pare	0,5554	3:	510040 Alto Garças	0,7313	74	510523 Lambari D'Oeste	0,7713	109	510035 Alto Boa Vista	0,786
	5 510794 Tabaporã	0,5751	4	510795 Tangará da	0,7323	75	510345 Denise	0,7720	110	510390 General Carneiro	0,787
	6 510760 Rondonópolis	0,5784	4	1 510360 Dom Aquin	0,7324	76	510285 Castanheira	0,7726	111	510590 Nobres	0,788
	7 510779 Santo Antônio do Le	0,5978	4	2 510480 Jaciara	0,7335	77	510780 Santo Antônio do Leverger	0,7726	112	510395 Glória D'Oeste	0,788
	8 510704 Primavera do Leste	0,5988	4	3 510706 Querência	0,7349	78	510810 Tesouro	0,7730	113	510777 Santa Terezinha	0,789
	9 510452 Ipiranga do Norte*	0,6116	4	4 510515 Juína	0,7356	79	510560 Matupá	0,7734	114	510100 Araguaiana	0,790
	10 510776 Santa Rita do Trivela	0,6117	4	5 510510 Juara	0,7368	80	510895 Nova Monte Verde	0,7747	115	510677 Porto Alegre do Nort	0,790
	11 510350 Diamantino	0,6133	4	5 510628 Novo São Jo	0,7397	81	510626 Novo Mundo*	0,7751	116	510627 Novo Horizonte do N	0,790
	12 510460 Itiquira	0,6187	4	7 510675 Pontes e La	0,7400	82	510830 União do Sul*	0,7751	117	510500 Jauru	0,791
	13 510622 Nova Mutum	0,6189	4	3 510860 Vila Rica	0,7413	83	510520 Juscimeira	0,7755	118	510120 Araguainha	0,791
	14 510325 Colniza*	0,6197	4	510025 Alta Florest	0,7416	84	510724 Santa Carmem	0,7756	119	510820 Torixoréu	0,791
	15 510268 Campos de Júlio*	0,6243	5	510420 Guiratinga	0,7456	85	510629 Paranaíta	0,7760	120	510775 Salto do Céu	0,792
	16 510757 Rondolândia*	0,6441	5	1 510805 Terra Nova	0,7458	86	510740 São Pedro da Cipa	0,7760	121	510380 Figueirópolis D'Oeste	0,792
	17 510454 Itanhangá*	0,6461	5.	2 510735 São José do	0,7465	87	510305 Cláudia	0,7761	122	510490 Jangada	0,792
	18 510525 Lucas do Rio Verde	0,6467	5	3 510140 Aripuanã	0,7530	88	510682 Porto Esperidião	0,7764	123	510726 Santo Afonso	0,792
	19 510185 Bom Jesus do Aragua	0,6470	5-	4 510630 Paranating	0,7535	89	510300 Chapada dos Guimarães	0,7765	124	510610 Nossa Senhora do Liv	0,793
	20 510835 Vale de São Doming	0,6536	5.	5 510270 Canarana	0,7553	90	510642 Peixoto de Azevedo	0,7765	125	510785 São Félix do Araguaia	0,793
	21 510619 Nova Santa Helena*	0,6572	5	5 510020 Água Boa	0,7570	91	510310 Cocalinho	0,7775	126	510517 Juruena	0,793
	22 510774 Santa Cruz do Xingu'	0,6573	5	7 510790 Sinop	0,7570	92	510850 Vera	0,7785	127	510670 Ponte Branca	0,794
	23 510343 Curvelândia*	0,6602	5	3 510180 Barra do Ga	0,7594	93	510710 São José dos Quatro Marco	0,7789	128	510885 Nova Marilândia	0,794
	24 510336 Conquista D'Oeste*	0,6606	5	510890 Nova Marin	0,7602	94	510279 Carlinda	0,7794	129	510685 Porto Estrela	0,796
	25 510617 Nova Nazaré*	0,6606	6	510330 Comodoro	0,7609	95	510370 Feliz Natal*	0,7796	130	510719 Ribeirãozinho	0,797
	26 510631 Novo Santo Antônio	0,6649	6	1 510558 Marcelândi	0,7618	96	510337 Cotriguaçu	0,7802	131	510645 Planalto da Serra	0,798
	27 510637 Pedra Preta	0,6725	6	2 510320 Colíder	0,7623	97	510450 Indiavaí	0,7820	132	510050 Alto Paraguai	0,798
	28 510800 Tapurah	0,6910	6	3 510787 Sapezal*	0,7634	98	510455 Itaúba	0,7822	133	510715 Reserva do Cabaçal	0,798
	29 510250 Cáceres	0,6961	6	4 510621 Nova Cana	0,7650	99	510718 Ribeirão Cascalheira	0,7823	134	510729 São José do Povo	0,799
	30 510624 Nova Ubiratã*	0,7030	6	5 510550 Vila Bela da	0,7661	100	510080 Apiacás	0,7826	135	510160 Barão de Melgaço	0,800
	31 510792 Sorriso	0,7081	6	510623 Nova Olímp	0,7666	101	510615 Nova Bandeirantes	0,7830	136	510730 São José do Rio Claro	0,802
	32 510060 Alto Taquari	0,7083	6	7 510680 Porto dos G	0,7667	102	510269 Canabrava do Norte	0,7833	137	510620 Nova Brasilândia	0,803
	33 510030 Alto Araguaia	0,7135	6	3 510770 Rosário Oes	0,7668	103	510618 Nova Lacerda*	0,7838	138	510530 Luciara	0,803
	34 510840 Várzea Grande	0,7167	6	9 510650 Poconé	0,7672	104	510880 Nova Guarita	0,7840	139	510600 Nortelândia	0,804
	35 510190 Brasnorte	0,7273	7	510625 Nova Xavar	0,7677	105	510125 Araputanga	0,7853	140	510720 Rio Branco	0,806
							·		141	510130 Arenápolis	0,808

Índice de Pressão

Ordem	Municípios	IP	Ordem	Municípios	IP	Ordem	Municípios	IP	Ordem	Municípios	IP
:	Campo Novo do Parecis	0,0000	31	Alto Paraguai	0,9622	61	Colíder	0,9955	91	Nova Monte Verde	0,9985
- :	Barra do Bugres	0,2782	32	Tapurah	0,9623	62	Nortelândia	0,9958	92	Indiavaí	0,9987
3	Nova Olímpia	0,3249	33	General Carneir	0,9668	63	Matupá	0,9959	93	Peixoto de Azevedo	0,9988
4	Denise	0,3781	34	Canarana	0,9683	64	Campinápolis	0,9959	94	São Félix do Araguaia	0,9988
	Jaciara	0,6218	35	Paranatinga	0,9721	65	Figueirópolis D'Oe	0,9960	95	Ribeirãozinho	0,9988
6	Sorriso	0,6411	36	Sinop	0,9743	66	São José do Povo	0,9960	96	Novo Horizonte do Nort	0,9988
	Diamantino	0,6979	37	Cáceres	0,9756	67	Glória D'Oeste	0,9960	97	Santa Terezinha	0,9988
8	Primavera do Leste	0,7682	38	Brasnorte	0,9765	68	Santo Antônio do	0,9961	98	Nova Bandeirantes	0,9988
9	Campo Verde	0,8065	39	Vera	0,9804	69	Aripuanã	0,9961	99	Marcelândia	0,9989
10	Itiquira	0,8165	40	Guarantã do No	0,9861	70	Salto do Céu	0,9965	100	Tabaporã	0,9989
1:	Lucas do Rio Verde	0,8191	41	Alta Floresta	0,9861	71	Paranaíta	0,9965	101	Cuiabá	0,9991
12	Nova Mutum	0,8280	42	Alto Araguaia	0,9874	72	Nossa Senhora do	0,9966	102	Alto Boa Vista	0,9991
13	Tangará da Serra	0,8305	43	Tesouro	0,9876	73	Mirassol d'Oeste	0,9968	103	Porto Estrela	0,9991
14	São José do Rio Claro	0,8509	44	Querência	0,9889	74	Rosário Oeste	0,9971	104	Arenápolis	0,9991
15	Poconé	0,8519	45	Chapada dos Gu	0,9893	75	Juara	0,9973	105	São José do Xingu	0,9991
16	Novo São Joaquim	0,8586	46	Planalto da Seri	0,9898	76	Jauru	0,9975	106	Torixoréu	0,9991
17	Dom Aquino	0,8745	47	Nova Xavantina	0,9905	77	Cocalinho	0,9977	107	Acorizal	0,9993
18	Santo Afonso	0,8756	48	Nova Marilândi	0,9905	78	Castanheira	0,9977	108	Rio Branco	0,9993
19	Alto Taquari	0,8831	49	Terra Nova do N	0,9924	79	Porto dos Gaúcho	0,9978	109	Juruena	0,9993
20	Comodoro	0,8857	50	Vila Bela da San	0,9925	80	Jangada	0,9979	110	Cláudia	0,9994
2:	Confresa	0,8893	51	Pontes e Lacerd	0,9928	81	Apiacás	0,9979	111	Araguaiana	0,9995
22	Juscimeira	0,8972	52	Vila Rica	0,9931	82	Itaúba	0,9979	112	Reserva do Cabaçal	0,9995
23	Rondonópolis	0,8978	53	Nobres	0,9936	83	Porto Alegre do N	0,9980	113	Luciara	0,9996
24	Lambari D'Oeste	0,9035	54	Juína	0,9944	84	Canabrava do Nor	0,9980	114	Várzea Grande	0,9998
25	Pedra Preta	0,9088	55	Nova Canaã do	0,9944	85	Cotriguaçu	0,9981	115	Ponte Branca	0,9998
26	São Pedro da Cipa	0,9197	56	Santa Carmem	0,9946	86	Nova Guarita	0,9981	116	Araguainha	1,0000
2	Alto Garças	0,9315	57	São José dos Qu	0,9948	87	Ribeirão Cascalhe	0,9982	117	Pontal do Araguaia	1,0000
28	Poxoréo	0,9463	58	Nova Brasilândi	0,9952	88	Barra do Garças	0,9983			
29	Guiratinga	0,9564	59	Araputanga	0,9955	89	Nova Maringá	0,9983			
30	Água Boa	0,9587	60	Porto Esperidiã	0,9955	90	Barão de Melgaço	0,9984			

Ordem	Municípios	IP	Ordem	Municípios	IP	Ordem	Municípios	IP	Ordem	Municípios	IP
	1 Sorriso	0,4566	36	São Félix do Arag	0,7879	71	São José do Rio C	0,8755	106	Nova Brasilândia	0,9302
- 2	2 Paranatinga	0,5285	37	Terra Nova do No	0,7895	72	São José dos Qua	0,8757	107	Pontal do Araguaia	0,9325
3	3 Cáceres	0,5425	38	Nova Canaã do N	0,7930	73	Cláudia	0,8779	108	Planalto da Serra	0,9392
4	1 Alta Floresta	0,5986	39	Rosário Oeste	0,7935	74	Dom Aguino	0,8792	109	Lambari D'Oeste	0,9398
	Campo Novo do Parecis	0,6372	40	Gaúcha do Norte	0,7961	75	Campinápolis	0,8799	110	Salto do Céu	0,9398
(Vila Bela da Santíssima 1	0,6441	41	Brasnorte	0,7961	76	Cotriguaçu	0,8810	111	Alto Paraguai	0,9418
-	7 Canarana	0,6568	42	Guiratinga	0,7966	77	Barão de Melgaç	0,8823	112	Glória D'Oeste	0,9432
8	3 Juara	0,6671	43	Poconé	0,7976	78	Vera	0,8836	113	Acorizal	0,9443
g) Juína	0,6711	44	Nossa Senhora do	0,8035	79	Castanheira	0,8856	114	Araputanga	0,9451
10	Campo Verde	0,6727	45	Novo São Joaquir	0,8079	80	Santa Carmem	0,8859		Jangada	0,9468
1:	Nova Mutum	0,6733	46	Pedra Preta	0,8084	81	General Carneiro	0,8863	116	Nova Santa Helena	0,9473
12	2 Itiquira	0,6734	47	Comodoro	0,8084	82	Nobres	0,8877	117	União do Sul	0,9501
13	Nova Ubiratã	0,6834	48	Alto Araguaia	0,8166	83	Juscimeira	0,8882	118	Figueirópolis D'Oeste	0,9523
14	1 Aripuanã	0,6949	49	Nova Bandeirante	0,8214	84	Itaúba	0,8901	119	Juruena	0,9532
15	Diamantino	0,7179	50	Barra do Garças	0,8226	85	Nova Olímpia	0,8934	120	Santa Cruz do Xingu	0,9543
16	Cocalinho	0,7195	51	Ribeirão Cascalhe	0,8238	86	Apiacás .	0,8943	121	Luciara	0,9568
17	Guarantã do Norte	0,7301	52	Porto dos Gaúcho	0,8392	87	Canabrava do No	0,8952	122	Nova Nazaré	0,9581
18	3 Querência	0,7316	53	Tabaporã	0,8412	88	Rondolândia	0,8957	123	Conquista D'Oeste	0,9591
19	Pontes e Lacerda	0,7421	54	Tapurah	0,8415	89	Santa Terezinha	0,8959	124	Nova Marilândia	0,9595
20	Rondonópolis	0,7421	55	Porto Esperidião	0,8466	90	Santa Rita do Triv	0,8983	125	Novo Horizonte do N	0,9647
2:	Sapezal	0,7452	56	Alto Garças	0,8467	91	Mirassol d'Oeste	0,9026	126	Serra Nova Dourada	0,9653
22	2 Confresa	0,7527	57	Ipiranga do Norte	0,8480	92	Santo Antônio do	0,9052	127	Santo Afonso	0,9653
23	Lucas do Rio Verde	0,7555	58	Paranaíta	0,8483	93	Novo Mundo	0,9067	128	Reserva do Cabaçal	0,9727
24	1 Tangará da Serra	0,7560	59	Campos de Júlio	0,8495	94	Alto Boa Vista	0,9069	129	Novo Santo Antônio	0,9728
	Poxoréo	0,7561	60	Nova Maringá	0,8502	95	Bom Jesus do Ara	0,9076	130	Rio Branco	0,9732
26	Água Boa	0,7571	61	Itanhangá	0,8524	96	Jaciara	0,9078	131	São José do Povo	0,9733
	7 Sinop	0,7602	62	Nova Monte Verd	0,8530	97	Cuiabá	0,9120	132	Nortelândia	0,9748
28	Colíder	0,7642	63	Carlinda	0,8545	98	Torixoréu	0,9140	133	Arenápolis	0,9792
29	Marcelândia	0,7690	64	Colniza	0,8597	99	Nova Lacerda	0,9145	134	Ribeirãozinho	0,9802
30	Barra do Bugres	0,7715	65	Chapada dos Guir	0,8611	100	Feliz Natal	0,9199	135	Vale de São Domingo	0,9806
33	Peixoto de Azevedo	0,7724	66	Tesouro	0,8617	101	Jauru	0,9208	136	Ponte Branca	0,9808
32	Santo Antônio do Lever	0,7750	67	São José do Xingu			Porto Estrela	0,9225	137	Várzea Grande	0,9862
33	3 Vila Rica	0,7803	68	Matupá	0,8674	103	Nova Guarita	0,9236	138	Indiavaí	0,9862
34	Primavera do Leste	0,7806	69	Porto Alegre do N	0,8681	104	Denise	0,9264	139	São Pedro da Cipa	0,9869
35	Nova Xavantina	0,7824	70	Araguaiana	0,8734	105	Alto Taquari	0,9301	140	Araguainha	0,9880
				_			·		141	Curvelândia	0,9955

Índice de Estado:

Ordem	Municípios	IEstado	Ordem	Municípios	IEstado	Ordem	Municípios	IEstado	Ordem	Municípios	IEstado
1	Campo Novo do Parecis	0,0000	31	Nova Canaã do Norte	0,9833	61	Itaúba	0,9980	91	São Pedro da Cipa	0,9996
2	Primavera do Leste	0,5379	32	Cáceres	0,9833	62	São José do Povo	0,9980	92	Barão de Melgaço	0,9996
3	Campo Verde	0,7037	33	Querência	0,9836	63	Campinápolis	0,9981	93	Tabaporã	0,9996
4	Sorriso	0,7638	34	Vila Bela da Santíssima	0,9846	64	Santa Carmem	0,9982	94	Arenápolis	0,9997
5	Lucas do Rio Verde	0,7895	35	Colíder	0,9880	65	Alto Paraguai	0,9982	95	Novo Horizonte do Norte	0,9997
6	Diamantino	0,7989	36	Paranaíta	0,9897	66	Apiacás	0,9985	96	Canabrava do Norte	0,9997
7	Pedra Preta	0,8132	37	Paranatinga	0,9897	67	Salto do Céu	0,9985	97	Nossa Senhora do Livrame	0,9997
8	Itiquira	0,8266	38	Barra do Bugres	0,9901	68	Nova Marilândia	0,9986	98	Porto Estrela	0,9998
9	Nova Mutum	0,8566	39	Juscimeira	0,9902	69	Nova Bandeirantes	0,9987	99	Araguaiana	0,9998
10	Novo São Joaquim	0,8738	40	Nova Brasilândia	0,9913	70	Cuiabá	0,9987	100	Torixoréu	0,9998
11	Rondonópolis	0,8750	41	Figueirópolis D'Oeste	0,9919	71	Rosário Oeste	0,9987	101	São Félix do Araguaia	0,9998
12	Comodoro	0,9179	42	Tesouro	0,9929	72	Alto Boa Vista	0,9988	102	Marcelândia	0,9998
13	Tangará da Serra	0,9264	43	Pontes e Lacerda	0,9938	73	Terra Nova do Norte	0,9988	103	Acorizal	0,9998
14	General Carneiro	0,9420	44	Araputanga	0,9938	74	Cocalinho	0,9988	104	Reserva do Cabaçal	0,9998
15	Poxoréo	0,9455	45	Nortelândia	0,9940	75	Rio Branco	0,9989	105	Peixoto de Azevedo	0,9998
16	Alto Garças	0,9494	46	Vera	0,9942	76	Nobres	0,9989	106	Cláudia	0,9998
17	Alto Taquari	0,9506	47	Nova Monte Verde	0,9946	77	Matupá	0,9990	107	Poconé	0,9999
18	Jaciara	0,9642	48	Confresa	0,9950	78	Aripuanã	0,9990	108	Denise	0,9999
19	Canarana	0,9649	49	Guarantã do Norte	0,9954	79	Indiavaí	0,9990	109	Várzea Grande	0,9999
20	Guiratinga	0,9690	50	Porto Esperidião	0,9955	80	Jangada	0,9990	110	Ribeirãozinho	0,9999
21	Dom Aquino	0,9697	51	Juara	0,9956	81	Ribeirão Cascalheira	0,9990	111	Cotriguaçu	0,9999
22	Água Boa	0,9706	52	Chapada dos Guimarão	0,9956	82	Santo Antônio do Leverge	0,9991	112	Araguainha	0,9999
23	Alta Floresta	0,9723	53	Glória D'Oeste	0,9959	83	Juruena	0,9991	113	Vila Rica	1,0000
24	Nova Xavantina	0,9724	54	Juína	0,9960	84	Nova Maringá	0,9991	114	Ponte Branca	1,0000
25	Brasnorte	0,9729	55	Barra do Garças	0,9962	85	Jauru	0,9993	115	Planalto da Serra	1,0000
26	Sinop	0,9739	56	Santa Terezinha	0,9967	86	Porto dos Gaúchos	0,9993	116	Pontal do Araguaia	1,0000
27	Tapurah	0,9791	57	Lambari D'Oeste	0,9971	87	São José do Xingu	0,9994	117	Luciara	1,0000
28	São José dos Quatro Marcos	0,9822	58	Alto Araguaia	0,9972	88	Porto Alegre do Norte	0,9994			
29	São José do Rio Claro	0,9825	59	Castanheira	0,9972	89	Nova Guarita	0,9995			
30	Nova Olímpia	0,9830	60	Mirassol d'Oeste	0,9977	90	Santo Afonso	0,9995			

Ordem	Municípios	IEstado	Ordem	Municípios	IEstado	Ordem	Municípios	IEstado	Ordem	Municípios	IEstado
	Campo Novo do Parecis			Vera	0.9641		São José do Xir			Arenápolis	0.9993
	Primavera do Leste	0,3160		Barra do Garças	0,9643		Juruena	0,9965			0,9993
	Sapezal	0.3993		Tabaporã	0.9656		Carlinda	0.9967			0,9994
	Sorriso	0,4735		Ipiranga do Norte	-,		Juara	0,9967		0	0,9994
	Campo Verde	0.5101		Juscimeira	0.9733		Porto Alegre d				-
	Lucas do Rio Verde	0,5484		Nortelândia	0,9760		Nobres	0,9970		Araguainha	0,9995
	Nova Mutum	0,6048	.=	Barra do Bugres	0,9781		União do Sul	0,9971		Novo Santo An	-
	Diamantino	0,6266		Tesouro	0,9781		Nova Lacerda	0,9971			0,9996
	Campos de Júlio	0,6266	43		0,9791		Nova Marilând				0,9996
		-,			0,9798			-,			-
	Itiquira	0,7530	45		-,		Canabrava do I	-,			-
	Pedra Preta	0,7766	46		0,9827		Araputanga	0,9978			0,9997
	Brasnorte	0,7769	4/	Vila Bela da Santís	.,		Alto Boa Vista	0,9980		Novo Mundo	0,9997
	Querência	0,7896	48	Nova Canaã do No	.,		Colíder	0,9980		Nova Nazaré	0,9997
	Sinop	0,8249	49		0,9853		São Félix do Ar	-,			-,
	Nova Ubiratã	0,8394		Porto dos Gaúcho	-,		Aripuanã	0,9981		São José do Pov	-,
	Tangará da Serra	0,8423		Alto Araguaia	0,9856		Apiacás	0,9982		Santo Afonso	0,9997
17	Rondonópolis	0,8494		Bom Jesus do Ara	.,		Rosário Oeste	0,9982		Novo Horizonte	-,
18	Alto Garças	0,8918		Itaúba	0,9862		Figueirópolis D	0,9983		Colniza	0,9998
19	Canarana	0,8976	54	Cáceres	0,9876		Nova Santa He	.,		Cotriguaçu	0,9998
20	Santa Rita do Trivelato	0,9119	55	Chapada dos Guin	0,9889	90	Matupá	0,9983	125	Poconé	0,9998
21	Santo Antônio do Leste	0,9120	56	Cláudia	0,9916	91	Mirassol d'Oes	0,9984	126	Denise	0,9998
22	Tapurah	0,9223	57	Pontes e Lacerda	0,9921	92	Torixoréu	0,9984	127	Nossa Senhora	0,9998
23	Poxoréo	0,9224	58	São José dos Quat	0,9922	93	Castanheira	0,9986	128	Indiavaí	0,9998
24	Novo São Joaquim	0,9240	59	Santa Terezinha	0,9924	94	Santa Cruz do X	0,9987	129	Jauru	0,9999
25	General Carneiro	0,9333	60	Paranaíta	0,9930	95	Marcelândia	0,9987	130	Pontal do Aragi	0,9999
26	Guiratinga	0,9344	61	Nova Monte Verd	0,9932	96	Porto Esperidia	0,9989	131	Ponte Branca	0,9999
27	' Itanhangá	0,9364	62	Santo Antônio do	0,9933	97	Várzea Grande	0,9989	132	Acorizal	0,9999
28	Nova Xavantina	0,9397	63	Confresa	0,9938	98	Nova Bandeira	0,9990	133	Reserva do Cab	0,9999
29	Comodoro	0,9439	64	Alta Floresta	0,9939	99	Cuiabá	0,9992	134	Vila Rica	0,9999
30	Alto Taguari	0,9443	65	Feliz Natal	0,9940	100	Nova Guarita	0,9992	135	Barão de Melga	0,9999
31	Jaciara	0,9467	66	Alto Paraguai	0,9945	101	Cocalinho	0,9992	136	Araguaiana	1,0000
32	São José do Rio Claro	0,9510	67	Ribeirão Cascalhe	-		Guarantã do No	-			-
33	Dom Aguino	0,9575	68	Lambari D'Oeste	0,9958	103	Ribeirãozinho	0,9992		Planalto da Ser	-
	Água Boa	0,9600		Juína	0,9962		Conquista D'O	,			1,0000
	Nova Maringá	0.9621		Nova Brasilândia	0.9964		Campinápolis	0.9993		Serra Nova Dou	
- 33		5,5021	- 70	S. asilaliala	3,3304	103	campinapons	0,5555		Rondolândia	1,0000
									141	c.idoidilaid	1,0000

Índice de Exposição Geral:

Ordem	Municípios	IExposição	Ordem	Municípios	IExposição	Ordem	Municípios	IExposição	Ordem	Municípios	IExposiçã
1	Cuiabá	0,0000	31	Santo Antônio do Leverge	0,9678	61	Brasnorte	0,9816	91	Figueirópolis D'O	0,9921
2	Várzea Grande	0,5555	32	Nobres	0,9679	62	Tapurah	0,9828	92	Tabaporã	0,9921
3	Rondonópolis	0,6733	33	Água Boa	0,9683	63	Ribeirão Cascalheira	0,9834	93	Cotriguaçu	0,9922
4	Cáceres	0,8329	34	Chapada dos Guimarães	0,9695	64	Nova Mutum	0,9838	94	Porto Estrela	0,9923
5	Alta Floresta	0,8685	35	Comodoro	0,9706	65	Castanheira	0,9840	95	General Carneiro	0,9928
6	Sinop	0,8775	36	Canarana	0,9714	66	Dom Aquino	0,9842	96	Juruena	0,9929
7	Tangará da Serra	0,8854	37	Vila Bela da Santíssima Tr	0,9717	67	Novo São Joaquim	0,9842	97	São José do Xingu	0,9931
8	Barra do Garças	0,8941	38	Guiratinga	0,9720	68	Paranaíta	0,9843	98	Querência	0,9935
9	Pontes e Lacerda	0,9089	39	Vera	0,9721	69	Denise	0,9844	99	Glória D'Oeste	0,9943
10	Juína	0,9287	40	Vila Rica	0,9726	70	Itaúba	0,9846	100	Novo Horizonte de	0,9944
11	Poconé	0,9324	41	Araputanga	0,9729	71	Porto Esperidião	0,9846	101	Tesouro	0,9946
12	Peixoto de Azevedo	0,9356	42	Arenápolis	0,9732	72	Itiquira	0,9850	102	São Pedro da Cipa	0,9950
13	Colíder	0,9375	43	Pedra Preta	0,9737	73	Barão de Melgaço	0,9851	103	Santa Carmem	0,9951
14	Guarantã do Norte	0,9392	44	Cláudia	0,9737	74	Alto Garças	0,9852	104	Araguaiana	0,9951
15	Sorriso	0,9414	45	Lucas do Rio Verde	0,9740	75	Apiacás	0,9878	105	Pontal do Araguai	0,9956
16	Juara	0,9437	46	Campinápolis	0,9753	76	Jangada	0,9879	106	Alto Taquari	0,9958
17	Mirassol d'Oeste	0,9483	47	Nova Olímpia	0,9755	77	Santa Terezinha	0,9888	107	Nova Maringá	0,9959
18	Poxoréo	0,9527	48	Jauru	0,9758	78	Canabrava do Norte	0,9892	108	São José do Povo	0,9960
19	São José dos Quatro I	0,9527	49	Marcelândia	0,9762	79	Porto dos Gaúchos	0,9893	109	Santo Afonso	0,9963
20	Primavera do Leste	0,9547	50	São José do Rio Claro	0,9765	80	Acorizal	0,9894	110	Reserva do Cabaça	0,9968
21	Jaciara	0,9547	51	Juscimeira	0,9769	81	Nova Guarita	0,9894	111	Luciara	0,9969
22	Barra do Bugres	0,9556	52	Matupá	0,9770	82	Nova Brasilândia	0,9895	112	Planalto da Serra	0,9971
23	Nova Xavantina	0,9593	53	Alto Paraguai	0,9773	83	Lambari D'Oeste	0,9899	113	Nova Marilândia	0,9974
24	Paranatinga	0,9612	54	Alto Araguaia	0,9777	84	Rio Branco	0,9900	114	Ponte Branca	0,9977
25	Confresa	0,9634	55	Nossa Senhora do Livram	0,9780	85	Nova Monte Verde	0,9901	115	Indiavaí	0,9989
26	Campo Novo do Pare	0,9640	56	São Félix do Araguaia	0,9781	86	Salto do Céu	0,9901	116	Ribeirãozinho	0,9999
27	Aripuanã	0,9644	57	Campo Verde	0,9784	87	Torixoréu	0,9903	117	Araguainha	1,0000
28	Rosário Oeste	0,9662	58	Nova Canaã do Norte	0,9785	88	Cocalinho	0,9906			
29	Terra Nova do Norte	0,9668	59	Porto Alegre do Norte	0,9795	89	Nova Bandeirantes	0,9912			
30	Diamantino	0,9676	60	Nortelândia	0,9801	90	Alto Boa Vista	0,9919			

Ordem	Município	IExposição	Ordem	Municípios	IExposição	Ordem	Municípios	IExposição	Ordem	Municípios	IExposiçã
1	Cuiabá	0,0000	36	Nova Xavantina	0,9702	71	Carlinda	0,9854	106	Santa Carmem	0,9940
2	Várzea Gr	0,5319	37	Poxoréo	0,9704	72	Novo São Jo	0,9857	107	General Carne	0,9941
3	Rondonó	0,6887	38	Tabaporã	0,9708	73	Nova Monte	0,9858	108	Rondolândia	0,9941
4	Sinop	0,8104	39	Paranatinga	0,9729	74	Paranaíta	0,9859	109	Itanhangá	0,9942
5	Cáceres	0,8353	40	Nobres	0,9733	75	Jangada	0,9864	110	Campos de Júl	0,9943
6	Tangará d	0,8687	41	Santo Antônio	0,9736	76	Alto Garças	0,9868	111	Torixoréu	0,9944
7	Primavera	0,8913	42	Pedra Preta	0,9738	77	Dom Aquino	0,9871	112	Nova Maringá	0,9944
8	Barra do (0,8972	43	Água Boa	0,9747	78	Nova Ubirat	0,9879	113	Porto Estrela	0,9946
9	Sorriso	0,9087	44	Vila Bela da Sai	0,9747	79	Tapurah	0,9879	114	Nova Santa He	0,9954
10	Alta Flore	0,9149	45	Araputanga	0,9754	80	Ribeirão Cas	0,9880	115	São Pedro da O	0,9954
11	Pontes e	0,9238	46	São José do Rio	0,9755	81	São José do	0,9892	116	Lambari D'Oes	0,9956
12	Juína	0,9292	47	Colniza	0,9760	82	Castanheira	0,9894	117	Figueirópolis [0,9957
13	Juara	0,9354	48	Cotriguaçu	0,9774	83	Santa Terezi	0,9897	118	Araguaiana	0,9958
14	Guarantã	0,9398	49	Nossa Senhora	0,9775	84	Porto dos G	0,9901	119	Vale de São Do	0,9960
15	Barra do E	0,9417	50	Juscimeira	0,9784	85	Canabrava d	0,9901	120	São José do Po	0,996
16	Poconé	0,9441	51	Campinápolis	0,9784	86	Novo Mundo	0,9901	121	Planalto da Se	0,996
17	Lucas do I	0,9493	52	Jauru	0,9786	87	Itaúba	0,9902	122	Novo Horizont	0,9967
18	Confresa	0,9494	53	Sapezal	0,9788	88	Juruena	0,9903	123	Conquista D'O	0,996
19	Jaciara	0,9514	54	Brasnorte	0,9792	89	Apiacás	0,9905	124	Nova Marilând	0,996
20	Colíder	0,9528	55	Matupá	0,9799	90	Acorizal	0,9907	125	Salto do Céu	0,9970
21	Campo No	0,9531	56	Cláudia	0,9799	91	Barão de Me	0,9910	126	Glória D'Oeste	0,997
22	Campo Ve	0,9550	57	Alto Araguaia	0,9802	92	União do Su	0,9914	127	Ribeirãozinho	0,9978
23	Mirassol	0,9604	58	Terra Nova do I	0,9809	93	Alto Paragua	0,9916	128	Ipiranga do No	0,9980
24	Diamantii	0,9643	59	Vera	0,9809	94	Gaúcha do N	0,9918	129	Santo Antônio	0,9983
25	Vila Rica	0,9650	60	Guiratinga	0,9817	95	Alto Taquari	0,9919	130	Santo Afonso	0,998
26	Nova Olín	0,9660	61	Porto Esperidiâ	0,9818	96	Nova Guarit	0,9920	131	Tesouro	0,998
27	Comodor	0,9661	62	Nova Canaã do	0,9818	97	Cocalinho	0,9922	132	Indiavaí	0,998
28	Aripuanã	0,9664	63	Querência	0,9829	98	Nortelândia	0,9926	133	Luciara	0,998
29	Canarana	0,9665	64	Arenápolis	0,9834	99	Curvelândia	0,9930	134	Nova Nazaré	0,998
30	Nova Mut	0,9668	65	Itiquira	0,9835	100	Nova Lacerd	0,9933	135	Ponte Branca	0,998
31	Marcelân	0,9678	66	Nova Bandeira	0,9841	101	Bom Jesus d	0,9935	136	Santa Rita do 1	0,998
32	São José o	0,9690	67	Feliz Natal	0,9845	102	Rio Branco	0,9936	137	Reserva do Ca	0,999
33	Peixoto d	0,9690	68	Denise	0,9846	103	Nova Brasilâ	0,9937	138	Santa Cruz do	0,999
34	Chapada	0,9690	69	Porto Alegre do	0,9847	104	Alto Boa Vis	0,9937	139	Serra Nova Do	0,999
35	Rosário O	0,9695	70	São Félix do Ar	0,9851	105	Pontal do Ar	0,9938	140	Araguainha	0,999
									141	Novo Santo Ar	1,000

Índice de Exposição Infanto-juvenil:

Ordem	Municípios	IExIJ	Ordem	Municípios	IExIJ	Ordem	Municípios	IExIJ	Ordem	Municípios	IExIJ
	Cuiabá	0,0000		Santo Antônio do	0.9659		Brasnorte	0.9800		Alto Boa Vista	0.9909
	Várzea Grande	0,5328		Comodoro	0,9663		Ribeirão Cascalheir	0,9814		Figueirópolis D'Oe	.,
3	Rondonópolis	0.6758	33	Campo Novo do P			Tapurah	0.9820		Cotriguaçu	0.9914
	Cáceres	0.8212		Água Boa	0.9664		Castanheira	0.9824		Juruena	0.9916
	Alta Floresta	0,8625		Chapada dos Guir	-,		Porto Esperidião	0,9828		General Carneiro	0,9919
6	Sinop	0.8724		Vila Bela da Santís			Barão de Melgaço	0,9829		Querência	0,9920
	Tangará da Serra	0.8846	37	Vera	0.9683		Denise	0.9830		Nova Bandeirante	
	Barra do Garças	0,8953	38		0,9690		Novo São Joaquim	-,		São José do Xingu	0,9923
	Pontes e Lacerda	0,9011	39	Arenápolis	0,9701		Itaúba	0,9831		Novo Horizonte de	
10	Poconé	0,9239		Campinápolis	0,9702		Nova Mutum	0,9831		Glória D'Oeste	0,9941
	Juína	0.9248		Vila Rica	0.9709		Paranaíta	0.9837		Santa Carmem	0,9945
12	Peixoto de Azevedo	0,9281		Araputanga	0.9709		Itiquira	0,9847		Araguaiana	0,9945
13	Guarantã do Norte	0,9343		Jauru	0,9718		Jangada	0,9848		Tesouro	0,9946
14	Colíder	0,9380	44		0,9723		Dom Aguino	0,9848		São Pedro da Cipa	0,9947
15	Sorriso	0,9401	45	Lucas do Rio Verd			Santa Terezinha	0,9853		Nova Maringá	0,9951
	Juara	0.9408	46		0,9731		Canabrava do Nort	0,9860		Luciara	0,995
17	Mirassol d'Oeste	0.9474	47	Marcelândia	0.9742	77	Alto Garças	0,9869		Alto Taquari	0,9956
18	Poxoréo	0,9521	48	Pedra Preta	0,9743		Nova Brasilândia	0,9877		Reserva do Cabaça	
19	Primavera do Leste	0,9524	49	Nova Olímpia	0,9743	79	Acorizal	0,9877	109	Santo Afonso	0,9957
	São José dos Quatro Marco	0,9527	50	Alto Paraguai	0,9744	80	Lambari D'Oeste	0,9878		Pontal do Araguaia	
21	Barra do Bugres	0,9534	51	-			Porto dos Gaúchos	-		São José do Povo	0,9962
22	Jaciara	0,9547	52	Porto Alegre do N	0,9754	82	Apiacás	0,9883	112	Planalto da Serra	0,9962
23	Paranatinga	0,9577	53	Matupá	0,9758	83	Nova Guarita	0,9884	113	Nova Marilândia	0,9966
24	Nova Xavantina	0,9584	54	São Félix do Arago	0,9768	84	Salto do Céu	0,9890	114	Ponte Branca	0,9976
25	Confresa	0,9586	55	Campo Verde	0,9770	85	Cocalinho	0,9894	115	Indiavaí	0,9984
26	Aripuanã	0,9600	56	Nova Canaã do No	0,9770	86	Nova Monte Verde	0,9894	116	Ribeirãozinho	0,9995
27	Rosário Oeste	0,9624	57	Nossa Senhora do	0,9771	87	Rio Branco	0,9895	117	Araguainha	1,0000
28	Nobres	0,9635	58	Juscimeira	0,9772	88	Torixoréu	0,9905			
29	Diamantino	0,9645	59	Nortelândia	0,9782	89	Porto Estrela	0,9905			
30	Terra Nova do Norte	0,9656	60	Alto Araguaia	0,9786	90	Tabaporã	0,9908			

Ordem	Municípios	IExIJ	Ordem	Municípios	IExIJ	Ordem	Municípios	IExIJ	Ordem	Municípios	IExIJ
1	Cuiabá	0,0000	36	Vila Bela da Sa	0,9639	71	Paranaíta	0,9807	106	Luciara	0,9925
2	Várzea Grande	0,5312	37	Vera	0,9654	72	Itiquira	0,9817	107	Alto Taquari	0,9926
3	Rondonópolis	0,6738	38	Canarana	0,9660	73	Jangada	0,9818	108	Reserva do Ca	0,992
4	Cáceres	0,8188	39	Arenápolis	0,9672	74	Dom Aquino	0,9818	109	Santo Afonso	0,992
5	Alta Floresta	0,8599	40	Campinápolis	0,9673	75	Santa Terezir	0,9824	110	Pontal do Ara	0,992
6	Sinop	0,8698	41	Vila Rica	0,9680	76	Canabrava do	0,9830	111	São José do P	0,993
7	Tangará da Serra	0,8819	42	Araputanga	0,9680	77	Alto Garças	0,9839	112	Planalto da So	0,993
8	Barra do Garças	0,8926	43	Jauru	0,9689	78	Nova Brasilâı	0,9847	113	Nova Marilân	0,993
9	Pontes e Lacerda	0,8983	44	Cláudia	0,9694	79	Acorizal	0,9848	114	Ponte Branca	0,9946
10	Poconé	0,9211	45	Lucas do Rio V	0,9694	80	Lambari D'Oe	0,9848	115	Indiavaí	0,995
11	Juína	0,9220	46	Guiratinga	0,9701	81	Porto dos Ga	0,9853	116	Ribeirãozinho	0,996
12	Peixoto de Azev	0,9253	47	Marcelândia	0,9712	82	Apiacás	0,9853	117	Araguainha	0,9970
13	Guarantã do Nort	0,9314	48	Pedra Preta	0,9714	83	Nova Guarita	0,9854	118	Bom Jesus do	1,000
14	Colíder	0,9352	49	Nova Olímpia	0,9714	84	Salto do Céu	0,9860	119	Campos de Jú	1,000
15	Sorriso	0,9372	50	Alto Paraguai	0,9714	85	Cocalinho	0,9864	120	Carlinda	1,000
16	Juara	0,9380	51	São José do Rio	0,9715	86	Nova Monte	0,9864	121	Colniza	1,000
17	Mirassol d'Oeste	0,9445	52	Porto Alegre d	0,9725	87	Rio Branco	0,9865	122	Conquista D'0	1,000
18	Poxoréo	0,9492	53	Matupá	0,9729	88	Torixoréu	0,9875	123	Curvelândia	1,000
19	Primavera do Les	0,9495	54	São Félix do Ai	0,9738	89	Porto Estrela	0,9875	124	Feliz Natal	1,000
20	São José dos Qua	0,9498	55	Campo Verde	0,9740	90	Tabaporã	0,9878	125	Gaúcha do No	1,000
21	Barra do Bugres	0,9505	56	Nova Canaã do	0,9740	91	Alto Boa Vist	0,9879	126	Ipiranga do N	1,000
22	Jaciara	0,9518	57	Nossa Senhora	0,9741	92	Figueirópolis	0,9883	127	Itanhangá	1,000
23	Paranatinga	0,9548	58	Juscimeira	0,9742	93	Cotriguaçu	0,9884	128	Nova Lacerda	1,000
24	Nova Xavantina	0,9555	59	Nortelândia	0,9753	94	Juruena	0,9886	129	Nova Nazaré	1,000
25	Confresa	0,9557	60	Alto Araguaia	0,9756	95	General Carn	0,9890	130	Nova Santa H	1,000
26	Aripuanã	0,9571	61	Brasnorte	0,9771	96	Querência	0,9890	131	Nova Ubiratã	1,000
27	Rosário Oeste	0,9595	62	Ribeirão Casca	0,9784	97	Nova Bandei	0,9892	132	Novo Mundo	1,000
28	Nobres	0,9606	63	Tapurah	0,9790	98	São José do X	0,9893	133	Novo Santo A	1,000
29	Diamantino	0,9616	64	Castanheira	0,9795	99	Novo Horizor	0,9910	134	Rondolândia	1,000
30	Terra Nova do No	0,9627	65	Porto Esperidi	0,9798	100	Glória D'Oest	0,9911	135	Santa Cruz do	1,000
31	Santo Antônio de	0,9629	66	Barão de Melga	0,9800	101	Santa Carme	0,9915	136	Santa Rita do	1,000
32	Comodoro	0,9633	67	Denise	0,9800	102	Araguaiana	0,9915	137	Santo Antôni	1,000
33	Campo Novo do	0,9634	68	Novo São Joaq	0,9801	103	Tesouro	0,9916	138	Sapezal	1,000
34	Água Boa	0,9635	69	Itaúba	0,9802	104	São Pedro da	0,9917	139	Serra Nova Do	1,000
35	Chapada dos Gui	0,9637	70	Nova Mutum	0,9802	105	Nova Maring	0,9921	140	União do Sul	1,000
							, ,		1/11	Vale de São E	

Índice de Efeito Geral:

	Índice de Efeito Geral.										
Ordem	Municípios	IEfeitoG	Ordem	Municípios	IEfeitoG	Ordem	Municípios	IEfeitoG	Ordem	Municípios	IEfeitoG
	Cuiabá	0,0000		Alto Araguaia	0,9806	61	Rio Branco	0,9922	91	Alto Boa Vista	1,0000
	Rondonópolis	0,6705	32	Comodoro	0,9806	62	Rosário Oeste	0,9922	92	Alto Taquari	1,0000
3	Várzea Grande	0,7209	33	Cláudia	0,9845	63	Salto do Céu	0,9922	93	Araguaiana	1,0000
4	Cáceres	0,8760	34	Nova Canaã do Norte	0,9845	64	São José do Rio Claro	0,9922	94	Araguainha	1,0000
Ţ	Pontes e Lacerda	0,9031	35	Nova Mutum	0,9845	65	São Pedro da Cipa	0,9922	95	Campinápolis	1,0000
(Sinop	0,9302	36	Paranaíta	0,9845	66	Terra Nova do Norte	0,9922	96	Canabrava do No	1,0000
7	Juara	0,9341	37	Santo Antônio do Lev	0,9845	67	Vila Bela da Santíssin	0,9922	97	Cocalinho	1,0000
8	Barra do Garças	0,9380	38	Araputanga	0,9884	68	Alto Paraguai	0,9961	98	Cotriguaçu	1,0000
ģ	Tangará da Serra	0,9496	39	Campo Novo do Pare	0,9884	69	Apiacás	0,9961	99	Dom Aquino	1,0000
10	Juína	0,9535	40	Campo Verde	0,9884	70	Barão de Melgaço	0,9961	100	Glória D'Oeste	1,0000
1:	Alta Floresta	0,9574	41	Chapada dos Guimara	0,9884	71	Barra do Bugres	0,9961	101	Indiavaí	1,0000
12	Colíder	0,9574	42	Figueirópolis D'Oeste	0,9884	72	Canarana	0,9961	102	Itaúba	1,0000
13	Mirassol d'Oeste	0,9574	43	Itiquira	0,9884	73	Castanheira	0,9961	103	Luciara	1,0000
14	Poxoréo	0,9574	44	Juscimeira	0,9884	74	Confresa	0,9961	104	Nossa Senhora d	1,0000
15	Água Boa	0,9612	45	Matupá	0,9884	75	General Carneiro	0,9961	105	Nova Marilândia	1,0000
16	Jaciara	0,9612	46	Nortelândia	0,9884	76	Jangada	0,9961	106	Nova Maringá	1,0000
17	São José dos Quatro	0,9612	47	Nova Guarita	0,9884	77	Lambari D'Oeste	0,9961	107	Nova Monte Ver	1,0000
18	Guiratinga	0,9651	48	Nova Olímpia	0,9884	78	Nobres	0,9961	108	Planalto da Serra	1,0000
19	Nova Xavantina	0,9651	49	Porto Esperidião	0,9884	79	Nova Bandeirantes	0,9961	109	Ponte Branca	1,0000
20	Pedra Preta	0,9651	50	Vera	0,9884	80	Novo Horizonte do N	0,9961	110	Porto Alegre do I	1,0000
2:	Sorriso	0,9651	51	Aripuanã	0,9922	81	Porto dos Gaúchos	0,9961	111	Porto Estrela	1,0000
22	Alto Garças	0,9690	52	Brasnorte	0,9922	82	Reserva do Cabaçal	0,9961	112	Querência	1,0000
23	Primavera do Leste	0,9690	53	Denise	0,9922	83	Santa Terezinha	0,9961	113	Ribeirão Cascalhe	1,0000
24	Vila Rica	0,9690	54	Jauru	0,9922	84	Santo Afonso	0,9961	114	Ribeirãozinho	1,0000
25	Peixoto de Azevedo	0,9729	55	Juruena	0,9922	85	São Félix do Araguaia	0,9961	115	Santa Carmem	1,0000
26	Poconé	0,9729	56	Marcelândia	0,9922	86	São José do Xingu	0,9961	116	São José do Povo	1,0000
27	Arenápolis	0,9767	57	Nova Brasilândia	0,9922	87	Tabaporã	0,9961	117	Tapurah	1,0000
28	Diamantino	0,9767	58	Novo São Joaquim	0,9922	88	Tesouro	0,9961			
29	Guarantã do Norte	0,9767	59	Paranatinga	0,9922	89	Torixoréu	0,9961			
30	Lucas do Rio Verde	0,9767	60	Pontal do Araguaia	0,9922	90	Acorizal	1,0000			

Ordem	Municípios	IEfeitoG	Ordem	Municípios	IEfeitoG	Ordem	Municípios	IEfeitoG	Ordem	Municípios	IEfeitoG
1	Cuiabá	0,0000	36	Rosário Oeste	0,9732	71	São José do Rio C	0,9893	106	São Pedro da	0,9946
2	Várzea Gran	0,5657	37	Araputanga	0,9759	72	Tabaporã	0,9893	107	Vila Bela da S	0,9946
3	Rondonópol	0,6729	38	Água Boa	0,9786	73	Acorizal	0,9920	108	Vila Rica	0,9946
4	Sinop	0,8123	39	Diamantino	0,9786	74	Alto Paraguai	0,9920	109	Alto Taquari	0,9973
5	Cáceres	0,8445	40	Dom Aquino	0,9786	75	Carlinda	0,9920	110	Araguaiana	0,9973
6	Alta Floresta	0,8981	41	Nova Guarita	0,9786	76	Cláudia	0,9920	111	Campinápoli	0,9973
7	Barra do Gar	0,9035	42	Nova Olímpia	0,9786	77	Cotriguaçu	0,9920	112	Campos de Ju	0,9973
8	Tangará da S	0,9062	43	Nova Xavantina	0,9786	78	General Carneiro	0,9920	113	Canabrava do	0,9973
9	Pontes e Lac	0,9249	44	Castanheira	0,9812	79	Glória D'Oeste	0,9920	114	Conquista D'	0,9973
10	Primavera d	0,9276	45	Juscimeira	0,9812	80	Nortelândia	0,9920	115	Figueirópolis	0,9973
11	Juína	0,9357	46	Marcelândia	0,9812	81	Nova Monte Ver	0,9920	116	Gaúcha do N	0,9973
12	Sorriso	0,9464	47	Nossa Senhora	0,9812	82	Paranaíta	0,9920	117	Ipiranga do N	0,9973
13	Chapada dos	0,9517	48	Nova Brasilândi	0,9812	83	Planalto da Serra	0,9920	118	Itanhangá	0,9973
14	Mirassol d'O	0,9517	49	Nova Mutum	0,9812	84	Porto Esperidião	0,9920	119	Lambari D'Oe	0,9973
15	Poconé	0,9517	50	Terra Nova do N	0,9812	85	Porto Estrela	0,9920	120	Luciara	0,9973
16	Barra do Bug	0,9544	51	Tesouro	0,9812	86	Santa Terezinha	0,9920	121	Nova Maring	0,9973
17	Juara	0,9544	52	Alto Garças	0,9839	87	Sapezal	0,9920	122	Nova Nazaré	0,9973
18	Poxoréo	0,9544	53	Aripuanã	0,9839	88	Torixoréu	0,9920	123	Nova Santa H	0,9973
19	São José dos	0,9544	54	Campo Novo do	0,9839	89	Alto Boa Vista	0,9946	124	Nova Ubiratã	0,9973
20	Campo Verd	0,9571	55	Confresa	0,9839	90	Apiacás	0,9946	125	Novo Mundo	0,9973
21	Jaciara	0,9598	56	Itiquira	0,9839	91	Brasnorte	0,9946	126	Novo Santo A	0,9973
22	Paranatinga	0,9598	57	Porto Alegre do	0,9839	92	Cocalinho	0,9946	127	Novo São Joa	0,9973
23	Peixoto de A	0,9598	58	Vera	0,9839	93	Curvelândia	0,9946	128	Pontal do Ara	0,9973
24	Pedra Preta	0,9625	59	Arenápolis	0,9866	94	Indiavaí	0,9946	129	Rondolândia	0,9973
25	Santo Antôn	0,9651	60	Barão de Melga	0,9866	95	Itaúba	0,9946	130	Santo Antôni	0,9973
26	Guiratinga	0,9678	61	Matupá	0,9866	96	Juruena	0,9946	131	São José do X	0,9973
27	Canarana	0,9705	62	Porto dos Gaúc	0,9866	97	Nova Lacerda	0,9946	132	Tapurah	0,9973
28	Comodoro	0,9705	63	Reserva do Cab	0,9866	98	Novo Horizonte	0,9946	133	União do Sul	0,997
29	Guarantã do	0,9705	64	São José do Pov	0,9866	99	Ponte Branca	0,9946	134	Vale de São [0,997
30	Lucas do Rio	0,9705	65	Denise	0,9893	100	Querência	0,9946	135	Araguainha	1,000
31	Nobres	0,9705	66	Feliz Natal	0,9893	101	Ribeirão Cascalh	0,9946	136	Bom Jesus do	1,000
32	Nova Canaã	0,9705	67	Jangada	0,9893	102	Rio Branco	0,9946	137	Nova Marilâr	1,000
33	Alto Araguai	0,9732	68	Jauru	0,9893	103	Salto do Céu	0,9946	138	Ribeirãozinh	1,000
34	Colíder	0,9732	69	Nova Bandeirar	0,9893	104	Santa Carmem	0,9946	139	Santa Cruz do	1,000
35	Colniza	0,9732	70	São Félix do Ara	0,9893	105	Santo Afonso	0,9946	140	Santa Rita do	1,000
									141	Serra Nova D	1,000

Índice de Efeito Infanto-juvenil:

Ordem	Municípios	IEfeitoIJ	Ordem	Municípios	IEfeitoIJ	Ordem	Municípios	IEfeitoIJ	Ordem	Municípios	IEfeitoIJ
1	Cuiabá	0,0000	31	Araguaiana	1,0000	61	Juara	1,0000	91	Porto Estrela	1,0000
2	Rondonópolis	0,8000	32	Araguainha	1,0000	62	Juína	1,0000	92	Poxoréo	1,0000
3	Várzea Grande	0,8500	33	Arenápolis	1,0000	63	Juruena	1,0000	93	Primavera do L	1,0000
4	Peixoto de Azevedo	0,9000	34	Barão de Me	1,0000	64	Lambari D'Oes	1,0000	94	Querência	1,0000
5	Araputanga	0,9500	35	Barra do Bug	1,0000	65	Lucas do Rio V	1,0000	95	Reserva do Cal	1,0000
6	Aripuanã	0,9500	36	Barra do Gar	1,0000	66	Luciara	1,0000	96	Ribeirão Casca	1,0000
7	Brasnorte	0,9500	37	Campinápoli	1,0000	67	Mirassol d'Oe	1,0000	97	Ribeirãozinho	1,0000
8	Cáceres	0,9500	38	Campo Novo	1,0000	68	Nobres	1,0000	98	Rio Branco	1,0000
9	Cláudia	0,9500	39	Campo Verde	1,0000	69	Nortelândia	1,0000	99	Salto do Céu	1,0000
10	Comodoro	0,9500	40	Canabrava do	1,0000	70	Nossa Senhor	1,0000	100	Santa Carmem	1,0000
11	Figueirópolis D'Oest	0,9500	41	Canarana	1,0000	71	Nova Bandeir	1,0000	101	Santa Terezinh	1,0000
12	2 Juscimeira	0,9500	42	Castanheira	1,0000	72	Nova Brasilân	1,0000	102	Santo Afonso	1,0000
13	Marcelândia	0,9500	43	Chapada dos	1,0000	73	Nova Canaã d	1,0000	103	Santo Antônio	1,0000
14	Matupá	0,9500	44	Cocalinho	1,0000	74	Nova Guarita	1,0000	104	São Félix do Ar	1,0000
15	Paranaíta	0,9500	45	Colíder	1,0000	75	Nova Marilân	1,0000	105	São José do Po	1,0000
16	Paranatinga	0,9500	46	Confresa	1,0000	76	Nova Maringá	1,0000	106	São José do Rio	1,0000
17	Poconé	0,9500	47	Cotriguaçu	1,0000	77	Nova Monte V	1,0000	107	São José do Xir	1,0000
18	Rosário Oeste	0,9500	48	Denise	1,0000	78	Nova Mutum	1,0000	108	São José dos Q	1,0000
19	Tabaporã	0,9500	49	Diamantino	1,0000	79	Nova Olímpia	1,0000	109	São Pedro da C	1,0000
20	Vera	0,9500	50	Dom Aquino	1,0000	80	Nova Xavantir	1,0000	110	Sinop	1,0000
21	Vila Bela da Santíssii	0,9500	51	General Carn	1,0000	81	Novo Horizon	1,0000	111	Sorriso	1,0000
22	Acorizal	1,0000	52	Glória D'Oes	1,0000	82	Novo São Joac	1,0000	112	Tangará da Ser	1,0000
23	Água Boa	1,0000	53	Guarantã do	1,0000	83	Pedra Preta	1,0000	113	Tapurah	1,0000
24	Alta Floresta	1,0000	54	Guiratinga	1,0000	84	Planalto da Se	1,0000	114	Terra Nova do	1,0000
25	Alto Araguaia	1,0000	55	Indiavaí	1,0000	85	Pontal do Ara	1,0000	115	Tesouro	1,0000
26	Alto Boa Vista	1,0000	56	Itaúba	1,0000	86	Ponte Branca	1,0000	116	Torixoréu	1,0000
27	Alto Garças	1,0000	57	Itiquira	1,0000	87	Pontes e Lace	1,0000	117	Vila Rica	1,0000
28	Alto Paraguai	1,0000	58	Jaciara	1,0000	88	Porto Alegre	1,0000			
29	Alto Taquari	1,0000	59	Jangada	1,0000	89	Porto dos Gaú	1,0000			
30	Apiacás	1,0000	60	Jauru	1,0000	90	Porto Esperid	1,0000			

Ordem	Municípios	IEfeitoIJ	Ordem	Municípios	IEfeitoIJ	Ordem	Municípios	IEfeitoIJ	Ordem	Municípios	IEfeitoIJ
1	Cuiabá	0,9600	36	Itiquira	0,9642	71	Sapezal	0,9650	106	Novo Mundo	0,9667
2	Rondonópoli	0,9608	37	Jangada	0,9642	72	Terra Nova do	0,9650	107	Ponte Branca	0,9667
3	Santo Antôni	0,9608	38	Jauru	0,9642	73	Torixoréu	0,9650	108	São José do Po	0,966
4	Barra do Garç	0,9617	39	Juruena	0,9642	74	Vera	0,9650	109	São Pedro da	0,966
5	Cáceres	0,9617	40	Lucas do Rio V	0,9642	75	Vila Rica	0,9650	110	Tapurah	0,966
ϵ	Diamantino	0,9617	41	Nova Olímpia	0,9642	76	Acorizal	0,9658	111	Tesouro	0,966
7	Mirassol d'O	0,9617	42	Nova Xavantin	0,9642	77	Apiacás	0,9658	112	Cláudia	0,967
8	Poconé	0,9617	43	Peixoto de Aze	0,9642	78	Aripuanã	0,9658	113	Gaúcha do No	0,967
9	Várzea Granc	0,9617	44	Pontes e Lacer	0,9642	79	Brasnorte	0,9658	114	Glória D'Oeste	0,967
10	Arenápolis	0,9625	45	Porto Esperidi	0,9642	80	Carlinda	0,9658	115	Nova Canaã d	0,967
11	Barão de Mel	0,9625	46	Rosário Oeste	0,9642	81	Cocalinho	0,9658	116	Nova Guarita	0,9675
12	Barra do Bug	0,9625	47	São José dos C	0,9642	82	Colíder	0,9658	117	Nova Lacerda	0,967
13	Jaciara	0,9625	48	Sinop	0,9642	83	Comodoro	0,9658	118	Pontal do Ara	0,967
14	Nobres	0,9625	49	Sorriso	0,9642	84	Cotriguaçu	0,9658	119	Tabaporã	0,967
15	Nossa Senho	0,9625	50	Vila Bela da Sa	0,9642	85	Figueirópolis D	0,9658	120	Alto Taquari	0,968
16	São Félix do	0,9625	51	Araguaiana	0,9650	86	Guarantã do No	0,9658	121	Araguainha	0,968
17	São José do F	0,9625	52	Campo Novo o	0,9650	87	Itaúba	0,9658	122	Indiavaí	0,968
18	Água Boa	0,9633	53	Canabrava do	0,9650	88	Nova Bandeira	0,9658	123	Santa Carmen	0,968
19	Alta Floresta	0,9633	54	Confresa	0,9650	89	Paranaíta	0,9658	124	Nova Ubiratã	0,969
20	Alto Paragua	0,9633	55	General Carne	0,9650	90	Paranatinga	0,9658	125	União do Sul	0,969
21	Araputanga	0,9633	56	Juara	0,9650	91	Porto dos Gaúo	0,9658	126	Campos de Jú	0,975
22	Chapada dos	0,9633	57	Juína	0,9650	92	Querência	0,9658	127	Bom Jesus do	1,000
23	Juscimeira	0,9633	58	Lambari D'Oes	0,9650	93	Reserva do Cal	0,9658	128	Colniza	1,000
24	Matupá	0,9633	59	Luciara	0,9650	94	Ribeirão Casca	0,9658	129	Conquista D'C	1,000
25	Nortelândia	0,9633	60	Nova Marilâno	0,9650	95	Ribeirãozinho	0,9658	130	Curvelândia	1,000
26	Nova Brasilâı	0,9633	61	Nova Mutum	0,9650	96	Salto do Céu	0,9658	131	Ipiranga do No	1,000
27	Rio Branco	0,9633	62	Novo São Joaq	0,9650	97	Santo Afonso	0,9658	132	Itanhangá	1,000
28	Tangará da S	0,9633	63	Pedra Preta	0,9650	98	Alto Boa Vista	0,9667	133	Nova Nazaré	1,000
29	Alto Araguaia	0,9642	64	Planalto da Se	0,9650	99	Alto Garças	0,9667	134	Nova Santa He	1,000
30	Campinápoli	0,9642	65	Porto Alegre d	0,9650	100	Castanheira	0,9667	135	Novo Santo A	1,000
31	Campo Verd	0,9642	66	Porto Estrela	0,9650	101	Feliz Natal	0,9667	136	Rondolândia	1,000
32	Canarana	0,9642	67	Poxoréo	0,9650	102	Marcelândia	0,9667	137	Santa Cruz do	1,000
33	Denise	0,9642	68	Primavera do I	0,9650	103	Nova Maringá	0,9667	138	Santa Rita do	1,000
34	Dom Aquino	0,9642	69	Santa Terezinh	0,9650	104	Nova Monte V	0,9667	139	Santo Antônio	1,000
35	Guiratinga	0,9642	70	São José do Xi	0,9650	105	Novo Horizont	0,9667	140	Serra Nova Do	1,000
									141	Vale de São D	1,000